
-
Previous Article
On parabolic external maps
- DCDS Home
- This Issue
- Next Article
The global stability of 2-D viscous axisymmetric circulatory flows
1. | School of Mathematical Sciences, Nanjing Normal University, Nanjing 210023, China |
2. | Department of Mathematics and IMS, Nanjing University, Nanjing 210093, China |
In this paper, we study the global existence and stability problem of a perturbed viscous circulatory flow around a disc. This flow is described by two-dimensional Navier-Stokes equations. By introducing some suitable weighted energy space and establishing a priori estimates, we show that the 2-D circulatory flow is globally stable in time when the corresponding initial-boundary values are perturbed sufficiently small.
References:
[1] |
S. Alinhac,
Temps de vie des solutions réguliéres des équations d'Euler compressibles axisymétriques en dimension deux, Invent. Math., 111 (1993), 627-670.
doi: 10.1007/BF01231301. |
[2] |
R. Courant and K. O. Friedrichs, Supersonic Flow and Shock Waves Interscience Publishers Inc., New York, 1948. |
[3] |
D. Cui and J. Li,
On the existence and stability of 2-D perturbed steady subsonic circulatory flows, Sci. China Math., 54 (2011), 1421-1436.
doi: 10.1007/s11425-011-4226-5. |
[4] |
D. Hoff,
Spherically symmetric solutions of the Navier-Stokes equations for compressible, isothermal flow with large, discontinuous initial data, Indiana Univ. Math. J., 41 (1992), 1225-1302.
doi: 10.1512/iumj.1992.41.41060. |
[5] |
J. Li and Z. Liang,
On local classical solutions to the Cauchy problem of the two-dimensional barotropic compressible Navier-Stokes equations with vacuum, J. Math. Pures Appl., 102 (2014), 640-671.
doi: 10.1016/j.matpur.2014.02.001. |
[6] |
J. Li and H. Yin, On the blowup problem of unsteady 2-D circulatory flow, Preprint, 2014. |
[7] |
C. H. Jun and K. Hyunseok,
Global existence of the radially symmetric solutions of the Navier-Stokes equations for the isentropic compressible fluids, Math. Methods Appl. Sci., 28 (2005), 1-28.
doi: 10.1002/mma.545. |
[8] |
Y. Kagei and T. Kobayashi,
Asymptotic behavior of solutions of the compressible Navier-Stokes equations on the half space, Arch. Ration. Mech. Anal., 177 (2005), 231-330.
doi: 10.1007/s00205-005-0365-6. |
[9] |
Y. Kagei and S. Kawashima,
Stability of planar stationary solutions to the compressible Navier-Stokes equation on the half space, Comm. Math. Phys., 266 (2006), 401-430.
doi: 10.1007/s00220-006-0017-1. |
[10] |
Y. Kagei,
Asymptotic behavior of solutions of the compressible Navier-Stokes equation around the plane Couette flow, J. Math. Fluid Mech., 13 (2011), 1-31.
doi: 10.1007/s00021-009-0019-9. |
[11] |
Y. Kagei,
Asymptotic behavior of solutions to the compressible Navier-Stokes equation around a parallel flow, Arch. Ration. Mech. Anal., 205 (2012), 585-650.
doi: 10.1007/s00205-012-0516-5. |
[12] |
P. L. Lions, Mathematical Topics in Fluid Dynamics Vol. 2, Compressible Models, Oxford Science Publication, Oxford, 1998. |
[13] |
A. Matsumura and T. Nishida,
Initial-boundary value problems for the equations of motion of compressible viscous and heat-conductive fluids, Comm. Math. Phys., 89 (1983), 445-464.
|
[14] |
Q. Jiu, Y. Wang and Z. Xin,
Global well-posedness of the Cauchy problem of two-dimensional compressible Navier-Stokes equations in weighted spaces, J. Differential Equations, 255 (2013), 351-404.
doi: 10.1016/j.jde.2013.04.014. |
[15] |
S. Ding, H. Wen, L. Yao and C. Zhu,
Global spherically symmetric classical solution to compressible Navier-Stokes equations with large initial data and vacuum, SIAM J. Math. Anal., 44 (2012), 1257-1278.
doi: 10.1137/110836663. |
[16] |
T. C. Sideris,
Delayed singularity formation in 2 D compressible flow, Amer. J. Math., 119 (1997), 371-422.
doi: 10.1353/ajm.1997.0014. |
[17] |
S. Jiang,
Global spherically symmetric solutions to the equations of a viscous polytropic ideal gas in an exterior domain, Comm. Math. Phys., 178 (1996), 339-374.
doi: 10.1007/BF02099452. |
[18] |
S. Jiang and P. Zhang,
On spherically symmetric solutions of the compressible isentropic Navier-Stokes equations, Comm. Math. Phys., 215 (2001), 559-581.
doi: 10.1007/PL00005543. |
[19] |
A. Tani,
On the first initial-boundary value problem of compressible viscous fluid motion, Publ. Res. Inst. Math. Sci. Kyoto Univ., 13 (1977), 193-253.
|
[20] |
C. Yonggeun, C. H. Jun and K. Hyunseok,
Unique solvability of the initial boundary value problems for compressible viscous fluids, J. Math. Pures Appl., 83 (2004), 243-275.
doi: 10.1016/j.matpur.2003.11.004. |
show all references
References:
[1] |
S. Alinhac,
Temps de vie des solutions réguliéres des équations d'Euler compressibles axisymétriques en dimension deux, Invent. Math., 111 (1993), 627-670.
doi: 10.1007/BF01231301. |
[2] |
R. Courant and K. O. Friedrichs, Supersonic Flow and Shock Waves Interscience Publishers Inc., New York, 1948. |
[3] |
D. Cui and J. Li,
On the existence and stability of 2-D perturbed steady subsonic circulatory flows, Sci. China Math., 54 (2011), 1421-1436.
doi: 10.1007/s11425-011-4226-5. |
[4] |
D. Hoff,
Spherically symmetric solutions of the Navier-Stokes equations for compressible, isothermal flow with large, discontinuous initial data, Indiana Univ. Math. J., 41 (1992), 1225-1302.
doi: 10.1512/iumj.1992.41.41060. |
[5] |
J. Li and Z. Liang,
On local classical solutions to the Cauchy problem of the two-dimensional barotropic compressible Navier-Stokes equations with vacuum, J. Math. Pures Appl., 102 (2014), 640-671.
doi: 10.1016/j.matpur.2014.02.001. |
[6] |
J. Li and H. Yin, On the blowup problem of unsteady 2-D circulatory flow, Preprint, 2014. |
[7] |
C. H. Jun and K. Hyunseok,
Global existence of the radially symmetric solutions of the Navier-Stokes equations for the isentropic compressible fluids, Math. Methods Appl. Sci., 28 (2005), 1-28.
doi: 10.1002/mma.545. |
[8] |
Y. Kagei and T. Kobayashi,
Asymptotic behavior of solutions of the compressible Navier-Stokes equations on the half space, Arch. Ration. Mech. Anal., 177 (2005), 231-330.
doi: 10.1007/s00205-005-0365-6. |
[9] |
Y. Kagei and S. Kawashima,
Stability of planar stationary solutions to the compressible Navier-Stokes equation on the half space, Comm. Math. Phys., 266 (2006), 401-430.
doi: 10.1007/s00220-006-0017-1. |
[10] |
Y. Kagei,
Asymptotic behavior of solutions of the compressible Navier-Stokes equation around the plane Couette flow, J. Math. Fluid Mech., 13 (2011), 1-31.
doi: 10.1007/s00021-009-0019-9. |
[11] |
Y. Kagei,
Asymptotic behavior of solutions to the compressible Navier-Stokes equation around a parallel flow, Arch. Ration. Mech. Anal., 205 (2012), 585-650.
doi: 10.1007/s00205-012-0516-5. |
[12] |
P. L. Lions, Mathematical Topics in Fluid Dynamics Vol. 2, Compressible Models, Oxford Science Publication, Oxford, 1998. |
[13] |
A. Matsumura and T. Nishida,
Initial-boundary value problems for the equations of motion of compressible viscous and heat-conductive fluids, Comm. Math. Phys., 89 (1983), 445-464.
|
[14] |
Q. Jiu, Y. Wang and Z. Xin,
Global well-posedness of the Cauchy problem of two-dimensional compressible Navier-Stokes equations in weighted spaces, J. Differential Equations, 255 (2013), 351-404.
doi: 10.1016/j.jde.2013.04.014. |
[15] |
S. Ding, H. Wen, L. Yao and C. Zhu,
Global spherically symmetric classical solution to compressible Navier-Stokes equations with large initial data and vacuum, SIAM J. Math. Anal., 44 (2012), 1257-1278.
doi: 10.1137/110836663. |
[16] |
T. C. Sideris,
Delayed singularity formation in 2 D compressible flow, Amer. J. Math., 119 (1997), 371-422.
doi: 10.1353/ajm.1997.0014. |
[17] |
S. Jiang,
Global spherically symmetric solutions to the equations of a viscous polytropic ideal gas in an exterior domain, Comm. Math. Phys., 178 (1996), 339-374.
doi: 10.1007/BF02099452. |
[18] |
S. Jiang and P. Zhang,
On spherically symmetric solutions of the compressible isentropic Navier-Stokes equations, Comm. Math. Phys., 215 (2001), 559-581.
doi: 10.1007/PL00005543. |
[19] |
A. Tani,
On the first initial-boundary value problem of compressible viscous fluid motion, Publ. Res. Inst. Math. Sci. Kyoto Univ., 13 (1977), 193-253.
|
[20] |
C. Yonggeun, C. H. Jun and K. Hyunseok,
Unique solvability of the initial boundary value problems for compressible viscous fluids, J. Math. Pures Appl., 83 (2004), 243-275.
doi: 10.1016/j.matpur.2003.11.004. |


[1] |
Peixin Zhang, Jianwen Zhang, Junning Zhao. On the global existence of classical solutions for compressible Navier-Stokes equations with vacuum. Discrete and Continuous Dynamical Systems, 2016, 36 (2) : 1085-1103. doi: 10.3934/dcds.2016.36.1085 |
[2] |
Ling-Bing He, Li Xu. On the compressible Navier-Stokes equations in the whole space: From non-isentropic flow to isentropic flow. Discrete and Continuous Dynamical Systems, 2021, 41 (7) : 3489-3530. doi: 10.3934/dcds.2021005 |
[3] |
Yuming Qin, Lan Huang, Zhiyong Ma. Global existence and exponential stability in $H^4$ for the nonlinear compressible Navier-Stokes equations. Communications on Pure and Applied Analysis, 2009, 8 (6) : 1991-2012. doi: 10.3934/cpaa.2009.8.1991 |
[4] |
Sun-Ho Choi. Weighted energy method and long wave short wave decomposition on the linearized compressible Navier-Stokes equation. Networks and Heterogeneous Media, 2013, 8 (2) : 465-479. doi: 10.3934/nhm.2013.8.465 |
[5] |
Pavel I. Plotnikov, Jan Sokolowski. Compressible Navier-Stokes equations. Conference Publications, 2009, 2009 (Special) : 602-611. doi: 10.3934/proc.2009.2009.602 |
[6] |
Huicheng Yin, Lin Zhang. The global existence and large time behavior of smooth compressible fluid in an infinitely expanding ball, Ⅱ: 3D Navier-Stokes equations. Discrete and Continuous Dynamical Systems, 2018, 38 (3) : 1063-1102. doi: 10.3934/dcds.2018045 |
[7] |
Daoyuan Fang, Bin Han, Matthias Hieber. Local and global existence results for the Navier-Stokes equations in the rotational framework. Communications on Pure and Applied Analysis, 2015, 14 (2) : 609-622. doi: 10.3934/cpaa.2015.14.609 |
[8] |
Reinhard Racke, Jürgen Saal. Hyperbolic Navier-Stokes equations II: Global existence of small solutions. Evolution Equations and Control Theory, 2012, 1 (1) : 217-234. doi: 10.3934/eect.2012.1.217 |
[9] |
Zhenhua Guo, Zilai Li. Global existence of weak solution to the free boundary problem for compressible Navier-Stokes. Kinetic and Related Models, 2016, 9 (1) : 75-103. doi: 10.3934/krm.2016.9.75 |
[10] |
Pavel I. Plotnikov, Jan Sokolowski. Optimal shape control of airfoil in compressible gas flow governed by Navier-Stokes equations. Evolution Equations and Control Theory, 2013, 2 (3) : 495-516. doi: 10.3934/eect.2013.2.495 |
[11] |
Shuguang Shao, Shu Wang, Wen-Qing Xu, Bin Han. Global existence for the 2D Navier-Stokes flow in the exterior of a moving or rotating obstacle. Kinetic and Related Models, 2016, 9 (4) : 767-776. doi: 10.3934/krm.2016015 |
[12] |
Zhilei Liang, Jiangyu Shuai. Existence of strong solution for the Cauchy problem of fully compressible Navier-Stokes equations in two dimensions. Discrete and Continuous Dynamical Systems - B, 2021, 26 (10) : 5383-5405. doi: 10.3934/dcdsb.2020348 |
[13] |
Bingkang Huang, Lusheng Wang, Qinghua Xiao. Global nonlinear stability of rarefaction waves for compressible Navier-Stokes equations with temperature and density dependent transport coefficients. Kinetic and Related Models, 2016, 9 (3) : 469-514. doi: 10.3934/krm.2016004 |
[14] |
Xulong Qin, Zheng-An Yao. Global solutions of the free boundary problem for the compressible Navier-Stokes equations with density-dependent viscosity. Communications on Pure and Applied Analysis, 2010, 9 (4) : 1041-1052. doi: 10.3934/cpaa.2010.9.1041 |
[15] |
Teng Wang, Yi Wang. Large-time behaviors of the solution to 3D compressible Navier-Stokes equations in half space with Navier boundary conditions. Communications on Pure and Applied Analysis, 2021, 20 (7&8) : 2811-2838. doi: 10.3934/cpaa.2021080 |
[16] |
Daniel Coutand, Steve Shkoller. Turbulent channel flow in weighted Sobolev spaces using the anisotropic Lagrangian averaged Navier-Stokes (LANS-$\alpha$) equations. Communications on Pure and Applied Analysis, 2004, 3 (1) : 1-23. doi: 10.3934/cpaa.2004.3.1 |
[17] |
Yingshan Chen, Shijin Ding, Wenjun Wang. Global existence and time-decay estimates of solutions to the compressible Navier-Stokes-Smoluchowski equations. Discrete and Continuous Dynamical Systems, 2016, 36 (10) : 5287-5307. doi: 10.3934/dcds.2016032 |
[18] |
Daoyuan Fang, Ting Zhang. Compressible Navier-Stokes equations with vacuum state in one dimension. Communications on Pure and Applied Analysis, 2004, 3 (4) : 675-694. doi: 10.3934/cpaa.2004.3.675 |
[19] |
Jing Wang, Lining Tong. Stability of boundary layers for the inflow compressible Navier-Stokes equations. Discrete and Continuous Dynamical Systems - B, 2012, 17 (7) : 2595-2613. doi: 10.3934/dcdsb.2012.17.2595 |
[20] |
Misha Perepelitsa. An ill-posed problem for the Navier-Stokes equations for compressible flows. Discrete and Continuous Dynamical Systems, 2010, 26 (2) : 609-623. doi: 10.3934/dcds.2010.26.609 |
2021 Impact Factor: 1.588
Tools
Metrics
Other articles
by authors
[Back to Top]