We study the global bifurcation and exact multiplicity of positive solutions for the positone multiparameter problem
$\left\{ \begin{align} &{{u}^{\prime \prime }}(x)+\lambda {{f}_{\varepsilon }}(u)=0\text{,}\ \ -1<x<1\text{,} \\ &u(-1)=u(1)=0\text{,} \\ \end{align} \right.$
where λ > 0 is a bifurcation parameter and $\varepsilon >0$ is an evolution parameter. Under some suitable hypotheses on $f_{\varepsilon }(u)$, we prove that there exists $\tilde{\varepsilon}>0$ such that, on the $(λ ,||u||_{∞ })$-plane, the bifurcation curve is S-shaped for $0<\varepsilon <\tilde{\varepsilon}$ and is monotone increasing for $\varepsilon ≥ \tilde{\varepsilon}$. We give an application for this problem with a class of polynomial nonlinearities $f_{\varepsilon}(u)=-\varepsilon u^{p}+bu^{2}+cu+d\ $ of degree p≥ 3 and coefficients $\varepsilon ,b,d>0,$ c ≥ 0. Our results generalize those in Hung and Wang (Trans. Amer. Math. Soc. 365 (2013) 1933-1956.)
Citation: |
Figure 6. Three possible graphs of $\theta _{\varepsilon }(u)$. (ⅰ) $\theta _{\varepsilon }(\gamma _{ \varepsilon })\leq 0$. (ⅱ) $\theta _{\varepsilon }(\gamma _{\varepsilon })>0>\theta _{\varepsilon }(p_{2}(\varepsilon ))$. (ⅲ) $\theta _{\varepsilon }(\gamma _{\varepsilon })>\theta _{\varepsilon }(p_{2}(\varepsilon ))\geq 0$.
K. J. Brown
, M. M. A. Ibrahim
and R. Shivaji
, S-shaped bifurcation curves, Nonlinear Anal., 5 (1981)
, 475-486.
doi: 10.1016/0362-546X(81)90096-1.![]() ![]() ![]() |
|
S.-Y. Huang
and S.-H. Wang
, Proof of a conjecture for the one-dimensional perturbed Gelfand problem from combustion theory, Arch. Rational Mech. Anal., 222 (2016)
, 769-825.
doi: 10.1007/s00205-016-1011-1.![]() ![]() ![]() |
|
K. -C. Hung, S. -Y. Huang and S. -H. Wang, Proof of Inequality (11). Available form http://mx.nthu.edu.tw/sy-huang/CubicNonlinearity.
![]() |
|
K.-C. Hung
and S.-H. Wang
, A theorem on S-shaped bifurcation curve for a positone problem with convex-concave nonlinearity and its applications to the perturbed Gelfand problem, J. Differential Equations, 251 (2011)
, 223-237.
doi: 10.1016/j.jde.2011.03.017.![]() ![]() ![]() |
|
K.-C. Hung
and S.-H. Wang
, Global bifurcation and exact multiplicity of positive solutions for a positone problem with cubic nonlinearity and their applications, Trans. Amer. Math. Soc., 365 (2013)
, 1933-1956.
doi: 10.1090/S0002-9947-2012-05670-4.![]() ![]() ![]() |
|
P. Korman
and Y. Li
, On the exactness of an S-shaped bifurcation curve, Proc. Amer. Math. Soc., 127 (1999)
, 1011-1020.
doi: 10.1090/S0002-9939-99-04928-X.![]() ![]() ![]() |
|
P. Korman
, Y. Li
and T. Ouyang
, Computing the location and the direction of bifurcation, Math. Res. Lett., 12 (2005)
, 933-944.
doi: 10.4310/MRL.2005.v12.n6.a13.![]() ![]() ![]() |
|
T. Laetsch
, The number of solutions of a nonlinear two point boundary value problem, Indiana Univ. Math. J., 20 (1970)
, 1-13.
doi: 10.1512/iumj.1971.20.20001.![]() ![]() |
|
C. Lu
, Global bifurcation of steady-state solutions on a biochemical system, SIAM J. Math. Anal., 21 (1990)
, 76-84.
doi: 10.1137/0521005.![]() ![]() ![]() |
|
J. Shi
, Persistence and bifurcation of degenerate solutions, J. Funct. Anal., 169 (1999)
, 494-531.
doi: 10.1006/jfan.1999.3483.![]() ![]() ![]() |
|
J. Shi, Multi-parameter bifurcation and applications, in: H. Brezis, K. C. Chang, S. J. Li, P. Rabinowitz (Eds.), ICM 2002 Satellite Conference on Nonlinear Functional Analysis: Topological Methods, Variational Methods and Their Applications, World Scientific, Singapore, 2003,211-222.
doi: 10.1142/9789812704283_0023.![]() ![]() ![]() |
|
C.-C. Tzeng
, K.-C. Hung
and S.-H. Wang
, Global bifurcation and exact multiplicity of positive solutions for a positone problem with cubic nonlinearity, J. Differential Equations, 252 (2012)
, 6250-6274.
doi: 10.1016/j.jde.2012.02.020.![]() ![]() ![]() |
|
S.-H. Wang
, On S-shaped bifurcation curves, Nonlinear Anal., 22 (1994)
, 1475-1485.
doi: 10.1016/0362-546X(94)90183-X.![]() ![]() ![]() |
Global bifurcation of bifurcation curves
The bifurcation surface
The projection of the bifurcation surface
The evolution of time maps
The graph of
Three possible graphs of