Motivated by the statistical mechanics description of stationary 2D-turbulence, for a sinh-Poisson type equation with asymmetric nonlinearity, we construct a concentrating solution sequence in the form of a tower of singular Liouville bubbles, each of which has a different degeneracy exponent. The asymmetry parameter $γ∈(0, 1]$ corresponds to the ratio between the intensity of the negatively rotating vortices and the intensity of the positively rotating vortices. Our solutions correspond to a superposition of highly concentrated vortex configurations of alternating orientation; they extend in a nontrivial way some known results for $\gamma=1$. Thus, by analyzing the case $\gamma≠1$ we emphasize specific properties of the physically relevant parameter $\gamma$ in the vortex concentration phenomena.
Citation: |
E. Caglioti
, P. L. Lions
, C. Marchioro
and M. Pulvirenti
, A special class of stationary flows for two-dimensional Euler equations: A statistical mechanics description, Commun. Math. Phys., 174 (1995)
, 229-260.
doi: 10.1007/BF02099602.![]() ![]() ![]() |
|
M. del Pino
, P. Esposito
and M. Musso
, Nondegeneracy of entire solutions of a singular Liouville equation, Proc. Am. Math. Soc., 140 (2012)
, 581-588.
doi: 10.1090/S0002-9939-2011-11134-1.![]() ![]() ![]() |
|
M. del Pino
, M. Kowalczyk
and M. Musso
, Singular limits in Liouville-type equations, Calc. Var. Partial Differential Equations, 24 (2005)
, 47-81.
doi: 10.1007/s00526-004-0314-5.![]() ![]() ![]() |
|
P. Esposito
, M. Grossi
and A. Pistoia
, On the existence of blowing-up solutions for a mean field equation, Ann. I. H. Poincaré, 22 (2005)
, 227-257.
doi: 10.1016/j.anihpc.2004.12.001.![]() ![]() ![]() |
|
G. L. Eyink
and K. R. Sreenivasan
, Onsager and the theory of hydrodynamic turbulence, Reviews of Modern Physics, 78 (2006)
, 87-135.
doi: 10.1103/RevModPhys.78.87.![]() ![]() ![]() |
|
M. Grossi
, C. Grumiau
and F. Pacella
, Lane Emden problems with large exponents and singular Liouville equations, J. Math. Pures Appl., 101 (2014)
, 735-754.
doi: 10.1016/j.matpur.2013.06.011.![]() ![]() |
|
M. Grossi
and A. Pistoia
, Multiple blow-up phenomena for the sinh-Poisson equation, Arch. Rational Mech. Anal., 209 (2013)
, 287-320.
doi: 10.1007/s00205-013-0625-9.![]() ![]() ![]() |
|
A. Jevnikar
, An existence result for the mean-field equation on compact surfaces in a doubly supercritical regime, Proc. Roy. Soc. Edinburgh Sect. A, 143 (2013)
, 1021-1045.
doi: 10.1017/S030821051200042X.![]() ![]() ![]() |
|
A. Jevnikar and W. Yang, Analytic aspects of the Tzitzéica equation: Blow-up analysis and existence results, Calc. Var. Partial Differential Equations, 56 (2017), Paper No. 43, 38 pp.
doi: 10.1007/s00526-017-1136-6.![]() ![]() ![]() |
|
D. D. Joseph
and T. S. Lundgren
, Quasilinear problems driven by positive sources, Arch. Rat. Mech. Anal., 49 (1973)
, 241-269.
doi: 10.1007/BF00250508.![]() ![]() ![]() |
|
J. Jost
, G. Wang
, D. Ye
and C. Zhou
, The blow up analysis of solutions of the elliptic sinh-Gordon equation, Calc. Var. Partial Differential Equations, 31 (2008)
, 263-276.
doi: 10.1007/s00526-007-0116-7.![]() ![]() ![]() |
|
G. Joyce
and D. Montgomery
, Negative temperature states for the two-dimensional guiding centre plasma, J. Plasma Phys., 10 (1973)
, 107-121.
![]() |
|
C. S. Lin
, An expository survey on recent development of mean field equations, Discr. Cont. Dynamical Systems, 19 (2007)
, 387-410.
doi: 10.3934/dcds.2007.19.387.![]() ![]() ![]() |
|
A. Malchiodi
, Topological methods for an elliptic equation with exponential nonlinearities, Discr. Cont. Dynamical Systems, 21 (2008)
, 277-294.
doi: 10.3934/dcds.2008.21.277.![]() ![]() ![]() |
|
J. Moser
, A sharp form of an inequality by N. Trudinger, Indiana Univ. Math. J, 20 (1970/71)
, 1077-1092.
doi: 10.1512/iumj.1971.20.20101.![]() ![]() ![]() |
|
C. Neri
, Statistical Mechanics of the $N$ -point vortex system with random intesities on a bounded domain, Ann. I. H. Poincaré, 21 (2004)
, 381-399.
doi: 10.1016/j.anihpc.2003.05.002.![]() ![]() ![]() |
|
H. Ohtsuka
, T. Ricciardi
and T. Suzuki
, Blow-up analysis for an elliptic equation describing stationary vortex flows with variable intensities in 2D-turbulence, J. Differential Equations, 249 (2010)
, 1436-1465.
doi: 10.1016/j.jde.2010.06.006.![]() ![]() ![]() |
|
H. Ohtsuka
and T. Suzuki
, Mean field equation for the equilibrium turbulence and a related functional inequality, Adv. Differential Equations, 11 (2006)
, 281-304.
![]() ![]() |
|
L. Onsager
, Statistical hydrodynamics, Nuovo Cimento Suppl, 6 (1949)
, 279-287.
doi: 10.1007/BF02780991.![]() ![]() ![]() |
|
A. Pistoia
and T. Ricciardi
, Concentrating solutions for a Liouville type equation with variable intensities in 2D-turbulence, Nonlinearity, 29 (2016)
, 271-297.
doi: 10.1088/0951-7715/29/2/271.![]() ![]() ![]() |
|
Y. B. Pointin
and T. S. Lundgren
, Statistical mechanics of two-dimensional vortices in a bounded container, Phys. Fluids, 19 (1976)
, 1459-1470.
![]() |
|
J. Prajapat
and G. Tarantello
, On a class of elliptic problems in $\mathbb R^2$ : Symmetry and uniqueness results, Proc. R. Soc. Edinb. Sect. A, 131 (2001)
, 967-985.
doi: 10.1017/S0308210500001219.![]() ![]() ![]() |
|
T. Ricciardi
, Mountain-pass solutions for a mean field equation from two-dimensional turbulence, Differential and Integral Equations, 20 (2007)
, 561-575.
![]() ![]() |
|
T. Ricciardi and G. Zecca, Minimal blow-up masses and existence of solutions for an asymmetric sinh-Poisson equation, arXiv: 1605.05895
![]() |
|
K. Sawada
and T. Suzuki
, Derivation of the equilibrium mean field equations of point vortex and vortex filament system, Theoret. Appl. Mech. Japan, 56 (2008)
, 285-290.
![]() |
|
R. Takahashi, Analysis Seminar, Naples Federico Ⅱ University, March 2016.
![]() |
|
N. S. Trudinger
, On imbeddings into Orlicz spaces and some applications, J. Math. Mech., 17 (1967)
, 473-483.
![]() ![]() |
|
D. Ye
, Une remarque sur le comportement asymptotique des solutions de $-Δ u=λ f(u)$, C.R. Acad. Sci. Paris, 325 (1997)
, 1279-1282.
doi: 10.1016/S0764-4442(97)82353-1.![]() ![]() ![]() |
|
C. Zhou
, Existence of solution for mean field equation for the equilibrium turbulence, Nonlinear Anal., 69 (2008)
, 2541-2552.
doi: 10.1016/j.na.2007.08.029.![]() ![]() ![]() |