
-
Previous Article
On the Dirichlet problem for fully nonlinear elliptic equations on annuli of metric cones
- DCDS Home
- This Issue
-
Next Article
Sign-changing tower of bubbles for a sinh-Poisson equation with asymmetric exponents
2-manifolds and inverse limits of set-valued functions on intervals
1. | University of Auckland, Private Bag 92019, Auckland, New Zealand |
2. | University of Oxford, Andrew Wiles Building, Radcliffe Observatory Quarter, Woodstock Road, Oxford, OX2 6GG, United Kingdom |
Suppose for each $n\in\mathbb{N}$, $f_n \colon [0,1] \to 2^{[0,1]}$ is a function whose graph $\Gamma(f_n) = \left\lbrace (x,y) \in [0,1]^2 \colon y \in f_n(x)\right\rbrace$ is closed in $[0,1]^2$ (here $2^{[0,1]}$ is the space of non-empty closed subsets of $[0,1]$). We show that the generalized inverse limit $\varprojlim (f_n) = \left\lbrace (x_n) \in [0,1]^\mathbb{N} \colon \forall n \in \mathbb{N},\ x_n \in f_n(x_{n+1})\right\rbrace$ of such a sequence of functions cannot be an arbitrary continuum, answering a long-standing open problem in the study of generalized inverse limits. In particular we show that if such an inverse limit is a 2-manifold then it is a torus and hence it is impossible to obtain a sphere.
References:
[1] |
E. Akin,
The General Topology of Dynamical Systems, vol. 1 of Graduate Studies in Mathematics, American Mathematical Society, Providence, RI, 1993. |
[2] |
I. Banič and J. Kennedy,
Inverse limits with bonding functions whose graphs are arcs, Topology Appl., 190 (2015), 9-21.
doi: 10.1016/j.topol.2015.04.009. |
[3] |
I. Banič, M. Črepnjak and V. Nall,
Some results about inverse limits with set-valued bonding functions, Topology Appl., 202 (2016), 106-111.
doi: 10.1016/j.topol.2016.01.007. |
[4] |
R. Engelking,
General Topology, vol. 6 of Sigma Series in Pure Mathematics, 2nd edition, Heldermann Verlag, Berlin, 1989, Translated from the Polish by the author. |
[5] |
J. Gallier and D. Xu,
A Guide to the Classification Theorem for Compact Surfaces, vol. 9 of Geometry and Computing, Springer, Heidelberg, 2013.
doi: 10.1007/978-3-642-34364-3. |
[6] |
S. Greenwood and J. Kennedy,
Connectedness and Ingram-Mahavier products, Topology Appl., 166 (2014), 1-9.
doi: 10.1016/j.topol.2014.01.016. |
[7] |
S. Greenwood and J. Kennedy,
Connected generalized inverse limits over intervals, Fund. Math., 236 (2017), 1-43.
doi: 10.4064/fm241-4-2016. |
[8] |
G. Guzik,
Minimal invariant closed sets of set-valued semiflows, J. Math. Anal. Appl., 449 (2017), 382-396.
doi: 10.1016/j.jmaa.2016.11.072. |
[9] |
K. P. Hart, J. Nagata and J. E. Vaughan (eds.), Encyclopedia of General Topology, Elsevier Science Publishers, B. V., Amsterdam, 2004. |
[10] |
W. Hurewicz and H. Wallman,
Dimension Theory, Princeton Mathematical Series, v. 4, Princeton University Press, Princeton, N. J., 1941. |
[11] |
A. Illanes,
A circle is not the generalized inverse limit of a subset of $[0, 1]^2$, Proc. Amer. Math. Soc., 139 (2011), 2987-2993.
doi: 10.1090/S0002-9939-2011-10876-1. |
[12] |
W. T. Ingram,
An Introduction to Inverse Limits with Set-Valued Functions, SpringerBriefs in Mathematics, Springer, New York, 2012.
doi: 10.1007/978-1-4614-4487-9. |
[13] |
W. T. Ingram and W. S. Mahavier,
Inverse limits of upper semi-continuous set valued functions, Houston J. Math., 32 (2006), 119-130.
|
[14] |
H. Kato,
On dimension and shape of inverse limits with set-valued functions, Fund. Math., 236 (2017), 83-99.
doi: 10.4064/fm233-4-2016. |
[15] |
J. Kennedy and V. Nall,
Dynamical properties of shift maps on inverse limits with a set valued function, Ergodic Theory and Dynamical Systems, (2016), 1-26.
doi: 10.1017/etds.2016.73. |
[16] |
R. Langevin and F. Przytycki,
Entropie de l'image inverse d'une application, Bull. Soc. Math. France, 120 (1992), 237-250.
doi: 10.24033/bsmf.2185. |
[17] |
W. S. Mahavier,
Inverse limits with subsets of $[0, 1]×[0, 1]$, Topology Appl., 141 (2004), 225-231.
doi: 10.1016/j.topol.2003.12.008. |
[18] |
R. P. McGehee and T. Wiandt,
Conley decomposition for closed relations, J. Difference Equ. Appl., 12 (2006), 1-47.
doi: 10.1080/00207210500171620. |
[19] |
R. McGehee,
Attractors for closed relations on compact hausdorff spaces, Indiana Univ. Math. J., 41 (1992), 1165-1209.
doi: 10.1512/iumj.1992.41.41058. |
[20] |
V. Nall,
More continua which are not the inverse limit with a closed subset of a unit square, Houston J. Math., 41 (2015), 1039-1050.
|
[21] |
A. R. Pears,
Dimension Theory of General Spaces, Cambridge University Press, Cambridge, England-New York-Melbourne, 1975. |
[22] |
T. Wiandt,
Liapunov functions for closed relations, J. Difference Equ. Appl., 14 (2008), 705-722.
doi: 10.1080/10236190701809315. |
show all references
References:
[1] |
E. Akin,
The General Topology of Dynamical Systems, vol. 1 of Graduate Studies in Mathematics, American Mathematical Society, Providence, RI, 1993. |
[2] |
I. Banič and J. Kennedy,
Inverse limits with bonding functions whose graphs are arcs, Topology Appl., 190 (2015), 9-21.
doi: 10.1016/j.topol.2015.04.009. |
[3] |
I. Banič, M. Črepnjak and V. Nall,
Some results about inverse limits with set-valued bonding functions, Topology Appl., 202 (2016), 106-111.
doi: 10.1016/j.topol.2016.01.007. |
[4] |
R. Engelking,
General Topology, vol. 6 of Sigma Series in Pure Mathematics, 2nd edition, Heldermann Verlag, Berlin, 1989, Translated from the Polish by the author. |
[5] |
J. Gallier and D. Xu,
A Guide to the Classification Theorem for Compact Surfaces, vol. 9 of Geometry and Computing, Springer, Heidelberg, 2013.
doi: 10.1007/978-3-642-34364-3. |
[6] |
S. Greenwood and J. Kennedy,
Connectedness and Ingram-Mahavier products, Topology Appl., 166 (2014), 1-9.
doi: 10.1016/j.topol.2014.01.016. |
[7] |
S. Greenwood and J. Kennedy,
Connected generalized inverse limits over intervals, Fund. Math., 236 (2017), 1-43.
doi: 10.4064/fm241-4-2016. |
[8] |
G. Guzik,
Minimal invariant closed sets of set-valued semiflows, J. Math. Anal. Appl., 449 (2017), 382-396.
doi: 10.1016/j.jmaa.2016.11.072. |
[9] |
K. P. Hart, J. Nagata and J. E. Vaughan (eds.), Encyclopedia of General Topology, Elsevier Science Publishers, B. V., Amsterdam, 2004. |
[10] |
W. Hurewicz and H. Wallman,
Dimension Theory, Princeton Mathematical Series, v. 4, Princeton University Press, Princeton, N. J., 1941. |
[11] |
A. Illanes,
A circle is not the generalized inverse limit of a subset of $[0, 1]^2$, Proc. Amer. Math. Soc., 139 (2011), 2987-2993.
doi: 10.1090/S0002-9939-2011-10876-1. |
[12] |
W. T. Ingram,
An Introduction to Inverse Limits with Set-Valued Functions, SpringerBriefs in Mathematics, Springer, New York, 2012.
doi: 10.1007/978-1-4614-4487-9. |
[13] |
W. T. Ingram and W. S. Mahavier,
Inverse limits of upper semi-continuous set valued functions, Houston J. Math., 32 (2006), 119-130.
|
[14] |
H. Kato,
On dimension and shape of inverse limits with set-valued functions, Fund. Math., 236 (2017), 83-99.
doi: 10.4064/fm233-4-2016. |
[15] |
J. Kennedy and V. Nall,
Dynamical properties of shift maps on inverse limits with a set valued function, Ergodic Theory and Dynamical Systems, (2016), 1-26.
doi: 10.1017/etds.2016.73. |
[16] |
R. Langevin and F. Przytycki,
Entropie de l'image inverse d'une application, Bull. Soc. Math. France, 120 (1992), 237-250.
doi: 10.24033/bsmf.2185. |
[17] |
W. S. Mahavier,
Inverse limits with subsets of $[0, 1]×[0, 1]$, Topology Appl., 141 (2004), 225-231.
doi: 10.1016/j.topol.2003.12.008. |
[18] |
R. P. McGehee and T. Wiandt,
Conley decomposition for closed relations, J. Difference Equ. Appl., 12 (2006), 1-47.
doi: 10.1080/00207210500171620. |
[19] |
R. McGehee,
Attractors for closed relations on compact hausdorff spaces, Indiana Univ. Math. J., 41 (1992), 1165-1209.
doi: 10.1512/iumj.1992.41.41058. |
[20] |
V. Nall,
More continua which are not the inverse limit with a closed subset of a unit square, Houston J. Math., 41 (2015), 1039-1050.
|
[21] |
A. R. Pears,
Dimension Theory of General Spaces, Cambridge University Press, Cambridge, England-New York-Melbourne, 1975. |
[22] |
T. Wiandt,
Liapunov functions for closed relations, J. Difference Equ. Appl., 14 (2008), 705-722.
doi: 10.1080/10236190701809315. |


[1] |
Tamara Fastovska. Upper semicontinuous attractor for 2D Mindlin-Timoshenko thermoelastic model with memory. Communications on Pure and Applied Analysis, 2007, 6 (1) : 83-101. doi: 10.3934/cpaa.2007.6.83 |
[2] |
Jan Prüss, Gieri Simonett. On the manifold of closed hypersurfaces in $\mathbb{R}^n$. Discrete and Continuous Dynamical Systems, 2013, 33 (11&12) : 5407-5428. doi: 10.3934/dcds.2013.33.5407 |
[3] |
Hassan Emamirad, Philippe Rogeon. Semiclassical limit of Husimi function. Discrete and Continuous Dynamical Systems - S, 2013, 6 (3) : 669-676. doi: 10.3934/dcdss.2013.6.669 |
[4] |
Jianli Xiang, Guozheng Yan. The uniqueness of the inverse elastic wave scattering problem based on the mixed reciprocity relation. Inverse Problems and Imaging, 2021, 15 (3) : 539-554. doi: 10.3934/ipi.2021004 |
[5] |
Yang Liu, Chunyou Sun. Inviscid limit for the damped generalized incompressible Navier-Stokes equations on $ \mathbb{T}^2 $. Discrete and Continuous Dynamical Systems - S, 2021, 14 (12) : 4383-4408. doi: 10.3934/dcdss.2021124 |
[6] |
Massimo Tarallo, Zhe Zhou. Limit periodic upper and lower solutions in a generic sense. Discrete and Continuous Dynamical Systems, 2018, 38 (1) : 293-309. doi: 10.3934/dcds.2018014 |
[7] |
Helge Holden, Nils Henrik Risebro. The continuum limit of Follow-the-Leader models — a short proof. Discrete and Continuous Dynamical Systems, 2018, 38 (2) : 715-722. doi: 10.3934/dcds.2018031 |
[8] |
Raz Kupferman, Cy Maor. The emergence of torsion in the continuum limit of distributed edge-dislocations. Journal of Geometric Mechanics, 2015, 7 (3) : 361-387. doi: 10.3934/jgm.2015.7.361 |
[9] |
Pierre Degond, Sophie Hecht, Nicolas Vauchelet. Incompressible limit of a continuum model of tissue growth for two cell populations. Networks and Heterogeneous Media, 2020, 15 (1) : 57-85. doi: 10.3934/nhm.2020003 |
[10] |
Seung-Yeal Ha, Myeongju Kang, Bora Moon. Uniform-in-time continuum limit of the lattice Winfree model and emergent dynamics. Kinetic and Related Models, 2021, 14 (6) : 1003-1033. doi: 10.3934/krm.2021036 |
[11] |
Mark Pollicott. Closed orbits and homology for $C^2$-flows. Discrete and Continuous Dynamical Systems, 1999, 5 (3) : 529-534. doi: 10.3934/dcds.1999.5.529 |
[12] |
Dingheng Pi. Limit cycles for regularized piecewise smooth systems with a switching manifold of codimension two. Discrete and Continuous Dynamical Systems - B, 2019, 24 (2) : 881-905. doi: 10.3934/dcdsb.2018211 |
[13] |
Henk Bruin, Sonja Štimac. On isotopy and unimodal inverse limit spaces. Discrete and Continuous Dynamical Systems, 2012, 32 (4) : 1245-1253. doi: 10.3934/dcds.2012.32.1245 |
[14] |
Sigve Hovda. Closed-form expression for the inverse of a class of tridiagonal matrices. Numerical Algebra, Control and Optimization, 2016, 6 (4) : 437-445. doi: 10.3934/naco.2016019 |
[15] |
Agust Sverrir Egilsson. On embedding the $1:1:2$ resonance space in a Poisson manifold. Electronic Research Announcements, 1995, 1: 48-56. |
[16] |
Armengol Gasull, Hector Giacomini. Upper bounds for the number of limit cycles of some planar polynomial differential systems. Discrete and Continuous Dynamical Systems, 2010, 27 (1) : 217-229. doi: 10.3934/dcds.2010.27.217 |
[17] |
Jian Hou, Liwei Zhang. A barrier function method for generalized Nash equilibrium problems. Journal of Industrial and Management Optimization, 2014, 10 (4) : 1091-1108. doi: 10.3934/jimo.2014.10.1091 |
[18] |
Seung Jun Chang, Jae Gil Choi. Generalized transforms and generalized convolution products associated with Gaussian paths on function space. Communications on Pure and Applied Analysis, 2020, 19 (1) : 371-389. doi: 10.3934/cpaa.2020019 |
[19] |
Zhuchun Li, Yi Liu, Xiaoping Xue. Convergence and stability of generalized gradient systems by Łojasiewicz inequality with application in continuum Kuramoto model. Discrete and Continuous Dynamical Systems, 2019, 39 (1) : 345-367. doi: 10.3934/dcds.2019014 |
[20] |
Guillaume Bal, Alexandre Jollivet. Generalized stability estimates in inverse transport theory. Inverse Problems and Imaging, 2018, 12 (1) : 59-90. doi: 10.3934/ipi.2018003 |
2021 Impact Factor: 1.588
Tools
Metrics
Other articles
by authors
[Back to Top]