Advanced Search
Article Contents
Article Contents

2-manifolds and inverse limits of set-valued functions on intervals

  • * Corresponding author: Sina Greenwood

    * Corresponding author: Sina Greenwood 
Abstract Full Text(HTML) Figure(2) Related Papers Cited by
  • Suppose for each $n\in\mathbb{N}$, $f_n \colon [0,1] \to 2^{[0,1]}$ is a function whose graph $\Gamma(f_n) = \left\lbrace (x,y) \in [0,1]^2 \colon y \in f_n(x)\right\rbrace$ is closed in $[0,1]^2$ (here $2^{[0,1]}$ is the space of non-empty closed subsets of $[0,1]$). We show that the generalized inverse limit $\varprojlim (f_n) = \left\lbrace (x_n) \in [0,1]^\mathbb{N} \colon \forall n \in \mathbb{N},\ x_n \in f_n(x_{n+1})\right\rbrace$ of such a sequence of functions cannot be an arbitrary continuum, answering a long-standing open problem in the study of generalized inverse limits. In particular we show that if such an inverse limit is a 2-manifold then it is a torus and hence it is impossible to obtain a sphere.

    Mathematics Subject Classification: Primary: 54C08, 54E45; Secondary: 54F15, 54F65.


    \begin{equation} \\ \end{equation}
  • 加载中
  • Figure 1.  A torus as a GIL on intervals

    Figure 2.  A circle as a binary Mahavier product of simply-connected spaces

  •   E. Akin, The General Topology of Dynamical Systems, vol. 1 of Graduate Studies in Mathematics, American Mathematical Society, Providence, RI, 1993.
      I. Banič  and  J. Kennedy , Inverse limits with bonding functions whose graphs are arcs, Topology Appl., 190 (2015) , 9-21.  doi: 10.1016/j.topol.2015.04.009.
      I. Banič , M. Črepnjak  and  V. Nall , Some results about inverse limits with set-valued bonding functions, Topology Appl., 202 (2016) , 106-111.  doi: 10.1016/j.topol.2016.01.007.
      R. Engelking, General Topology, vol. 6 of Sigma Series in Pure Mathematics, 2nd edition, Heldermann Verlag, Berlin, 1989, Translated from the Polish by the author.
      J. Gallier and D. Xu, A Guide to the Classification Theorem for Compact Surfaces, vol. 9 of Geometry and Computing, Springer, Heidelberg, 2013. doi: 10.1007/978-3-642-34364-3.
      S. Greenwood  and  J. Kennedy , Connectedness and Ingram-Mahavier products, Topology Appl., 166 (2014) , 1-9.  doi: 10.1016/j.topol.2014.01.016.
      S. Greenwood  and  J. Kennedy , Connected generalized inverse limits over intervals, Fund. Math., 236 (2017) , 1-43.  doi: 10.4064/fm241-4-2016.
      G. Guzik , Minimal invariant closed sets of set-valued semiflows, J. Math. Anal. Appl., 449 (2017) , 382-396.  doi: 10.1016/j.jmaa.2016.11.072.
      K. P. Hart, J. Nagata and J. E. Vaughan (eds.), Encyclopedia of General Topology, Elsevier Science Publishers, B. V., Amsterdam, 2004.
      W. Hurewicz and H. Wallman, Dimension Theory, Princeton Mathematical Series, v. 4, Princeton University Press, Princeton, N. J., 1941.
      A. Illanes , A circle is not the generalized inverse limit of a subset of $[0, 1]^2$, Proc. Amer. Math. Soc., 139 (2011) , 2987-2993.  doi: 10.1090/S0002-9939-2011-10876-1.
      W. T. Ingram, An Introduction to Inverse Limits with Set-Valued Functions, SpringerBriefs in Mathematics, Springer, New York, 2012. doi: 10.1007/978-1-4614-4487-9.
      W. T. Ingram  and  W. S. Mahavier , Inverse limits of upper semi-continuous set valued functions, Houston J. Math., 32 (2006) , 119-130. 
      H. Kato , On dimension and shape of inverse limits with set-valued functions, Fund. Math., 236 (2017) , 83-99.  doi: 10.4064/fm233-4-2016.
      J. Kennedy  and  V. Nall , Dynamical properties of shift maps on inverse limits with a set valued function, Ergodic Theory and Dynamical Systems, (2016) , 1-26.  doi: 10.1017/etds.2016.73.
      R. Langevin  and  F. Przytycki , Entropie de l'image inverse d'une application, Bull. Soc. Math. France, 120 (1992) , 237-250.  doi: 10.24033/bsmf.2185.
      W. S. Mahavier , Inverse limits with subsets of $[0, 1]×[0, 1]$, Topology Appl., 141 (2004) , 225-231.  doi: 10.1016/j.topol.2003.12.008.
      R. P. McGehee  and  T. Wiandt , Conley decomposition for closed relations, J. Difference Equ. Appl., 12 (2006) , 1-47.  doi: 10.1080/00207210500171620.
      R. McGehee , Attractors for closed relations on compact hausdorff spaces, Indiana Univ. Math. J., 41 (1992) , 1165-1209.  doi: 10.1512/iumj.1992.41.41058.
      V. Nall , More continua which are not the inverse limit with a closed subset of a unit square, Houston J. Math., 41 (2015) , 1039-1050. 
      A. R. Pears, Dimension Theory of General Spaces, Cambridge University Press, Cambridge, England-New York-Melbourne, 1975.
      T. Wiandt , Liapunov functions for closed relations, J. Difference Equ. Appl., 14 (2008) , 705-722.  doi: 10.1080/10236190701809315.
  • 加载中



Article Metrics

HTML views(275) PDF downloads(276) Cited by(0)

Access History

Other Articles By Authors



    DownLoad:  Full-Size Img  PowerPoint