Suppose for each $n\in\mathbb{N}$, $f_n \colon [0,1] \to 2^{[0,1]}$ is a function whose graph $\Gamma(f_n) = \left\lbrace (x,y) \in [0,1]^2 \colon y \in f_n(x)\right\rbrace$ is closed in $[0,1]^2$ (here $2^{[0,1]}$ is the space of non-empty closed subsets of $[0,1]$). We show that the generalized inverse limit $\varprojlim (f_n) = \left\lbrace (x_n) \in [0,1]^\mathbb{N} \colon \forall n \in \mathbb{N},\ x_n \in f_n(x_{n+1})\right\rbrace$ of such a sequence of functions cannot be an arbitrary continuum, answering a long-standing open problem in the study of generalized inverse limits. In particular we show that if such an inverse limit is a 2-manifold then it is a torus and hence it is impossible to obtain a sphere.
Citation: |
E. Akin,
The General Topology of Dynamical Systems, vol. 1 of Graduate Studies in Mathematics, American Mathematical Society, Providence, RI, 1993.
![]() ![]() |
|
I. Banič
and J. Kennedy
, Inverse limits with bonding functions whose graphs are arcs, Topology Appl., 190 (2015)
, 9-21.
doi: 10.1016/j.topol.2015.04.009.![]() ![]() ![]() |
|
I. Banič
, M. Črepnjak
and V. Nall
, Some results about inverse limits with set-valued bonding functions, Topology Appl., 202 (2016)
, 106-111.
doi: 10.1016/j.topol.2016.01.007.![]() ![]() ![]() |
|
R. Engelking,
General Topology, vol. 6 of Sigma Series in Pure Mathematics, 2nd edition, Heldermann Verlag, Berlin, 1989, Translated from the Polish by the author.
![]() ![]() |
|
J. Gallier and D. Xu,
A Guide to the Classification Theorem for Compact Surfaces, vol. 9 of Geometry and Computing, Springer, Heidelberg, 2013.
doi: 10.1007/978-3-642-34364-3.![]() ![]() ![]() |
|
S. Greenwood
and J. Kennedy
, Connectedness and Ingram-Mahavier products, Topology Appl., 166 (2014)
, 1-9.
doi: 10.1016/j.topol.2014.01.016.![]() ![]() ![]() |
|
S. Greenwood
and J. Kennedy
, Connected generalized inverse limits over intervals, Fund. Math., 236 (2017)
, 1-43.
doi: 10.4064/fm241-4-2016.![]() ![]() ![]() |
|
G. Guzik
, Minimal invariant closed sets of set-valued semiflows, J. Math. Anal. Appl., 449 (2017)
, 382-396.
doi: 10.1016/j.jmaa.2016.11.072.![]() ![]() ![]() |
|
K. P. Hart, J. Nagata and J. E. Vaughan (eds.), Encyclopedia of General Topology, Elsevier Science Publishers, B. V., Amsterdam, 2004.
![]() ![]() |
|
W. Hurewicz and H. Wallman,
Dimension Theory, Princeton Mathematical Series, v. 4, Princeton University Press, Princeton, N. J., 1941.
![]() ![]() |
|
A. Illanes
, A circle is not the generalized inverse limit of a subset of $[0, 1]^2$, Proc. Amer. Math. Soc., 139 (2011)
, 2987-2993.
doi: 10.1090/S0002-9939-2011-10876-1.![]() ![]() ![]() |
|
W. T. Ingram,
An Introduction to Inverse Limits with Set-Valued Functions, SpringerBriefs in Mathematics, Springer, New York, 2012.
doi: 10.1007/978-1-4614-4487-9.![]() ![]() ![]() |
|
W. T. Ingram
and W. S. Mahavier
, Inverse limits of upper semi-continuous set valued functions, Houston J. Math., 32 (2006)
, 119-130.
![]() ![]() |
|
H. Kato
, On dimension and shape of inverse limits with set-valued functions, Fund. Math., 236 (2017)
, 83-99.
doi: 10.4064/fm233-4-2016.![]() ![]() ![]() |
|
J. Kennedy
and V. Nall
, Dynamical properties of shift maps on inverse limits with a set valued function, Ergodic Theory and Dynamical Systems, (2016)
, 1-26.
doi: 10.1017/etds.2016.73.![]() ![]() |
|
R. Langevin
and F. Przytycki
, Entropie de l'image inverse d'une application, Bull. Soc. Math. France, 120 (1992)
, 237-250.
doi: 10.24033/bsmf.2185.![]() ![]() ![]() |
|
W. S. Mahavier
, Inverse limits with subsets of $[0, 1]×[0, 1]$, Topology Appl., 141 (2004)
, 225-231.
doi: 10.1016/j.topol.2003.12.008.![]() ![]() ![]() |
|
R. P. McGehee
and T. Wiandt
, Conley decomposition for closed relations, J. Difference Equ. Appl., 12 (2006)
, 1-47.
doi: 10.1080/00207210500171620.![]() ![]() ![]() |
|
R. McGehee
, Attractors for closed relations on compact hausdorff spaces, Indiana Univ. Math. J., 41 (1992)
, 1165-1209.
doi: 10.1512/iumj.1992.41.41058.![]() ![]() ![]() |
|
V. Nall
, More continua which are not the inverse limit with a closed subset of a unit square, Houston J. Math., 41 (2015)
, 1039-1050.
![]() ![]() |
|
A. R. Pears,
Dimension Theory of General Spaces, Cambridge University Press, Cambridge, England-New York-Melbourne, 1975.
![]() ![]() |
|
T. Wiandt
, Liapunov functions for closed relations, J. Difference Equ. Appl., 14 (2008)
, 705-722.
doi: 10.1080/10236190701809315.![]() ![]() ![]() |
A torus as a GIL on intervals
A circle as a binary Mahavier product of simply-connected spaces