In this paper, we study a class of fully nonlinear elliptic equations on annuli of metric cones constructed from closed Sasakian manifolds and derive the a priori estimates assuming the existence of subsolutions. Moreover, such a priori estimates can be applied to certain degenerate equations. A condition for the solvability of Dirichlet problem for non-degenerate fully nonlinear elliptic equations is discovered. Furthermore, we also discuss degenerate equations.
Citation: |
T. Aubin
, Équations du type Monge-Ampère sur les variétés Kähleriennes compactes, (French), Bull. Sci. Math., 102 (1978)
, 63-95.
![]() ![]() |
|
E. Bedford
and B. Taylor
, The Dirichlet problem for a complex Monge-Ampère equation, Invent. Math., 37 (1976)
, 1-4.
doi: 10.1007/BF01418826.![]() ![]() ![]() |
|
Z. Blocki
, On geodesics in the space of Kähler metrics, Adv. Lect. Math. (ALM), Int. Press, Somerville, MA, 37 (1976)
, 1-44.
![]() ![]() |
|
C. Boyer and K. Galicki,
Sasakian Geometry, Oxford: Oxford Mathematical Monographs, Oxford University press, 2008.
![]() ![]() |
|
L. Caffarelli
, L. Nirenberg
and J. Spruck
, The Dirichlet problem for nonlinear second-order elliptic equations Ⅲ: Functions of eigenvalues of the Hessians, Acta Math., 155 (1985)
, 261-301.
doi: 10.1007/BF02392544.![]() ![]() ![]() |
|
L. Caffarelli
, L. Nirenberg
and J. Spruck
, The Dirichlet problem for the degenerate Monge-Ampère equation, Rev. Mat. Iberoamericana, 2 (1986)
, 19-27.
doi: 10.4171/RMI/23.![]() ![]() ![]() |
|
L. Caffarelli
, J. Kohn
, L. Nirenberg
and J. Spruck
, The Dirichlet problem for nonlinear second-order elliptic equations. Ⅱ. Complex Monge-Ampère, and uniformaly elliptic, equations, Comm. Pure Applied Math., 38 (1985)
, 209-252.
doi: 10.1002/cpa.3160380206.![]() ![]() ![]() |
|
E. Calabi,
The Space of Kähler Metrics, Proc. Internat. Congress of Mathematicians, Amsterdam, Holland. 1954.
![]() |
|
X.-X. Chen
, The space of Kähler metrics, J. Diff. Geom., 56 (2000)
, 189-234.
doi: 10.4310/jdg/1090347643.![]() ![]() ![]() |
|
X.-X. Chen
, A new parabolic flow in Kähler manifolds, Comm. Anal. Geom., 12 (2004)
, 837-852.
doi: 10.4310/CAG.2004.v12.n4.a4.![]() ![]() ![]() |
|
T. Collins, A. Jacob and S. -T. Yau,
$(1, 1)$ forms with special Lagrangian type: A priori estimates and algebraic obstructions, arXiv: 1508.01934.
![]() |
|
S.-K. Donaldson
, Symmeric spaces, Kähler geometry and Hamiltonian dynamics, Northern California Symplectic Geometry Seminar, American Mathematical Society Translations: Series 2, 196 . Providence, RI: American Mmathematical Society, 45 (1999)
, 13-33.
doi: 10.1090/trans2/196/02.![]() ![]() ![]() |
|
S.-K. Donaldson
, Moment maps and diffeomorphisms, Asian J. Math., 45 (1999)
, 13-33.
doi: 10.4310/AJM.1999.v3.n1.a1.![]() ![]() ![]() |
|
S. Dinew and S. Kolodziej, Liouville and Calabi-Yau type theorems for complex Hessian equations, American Journal of Mathematics, 139 (2017), 403-415, arXiv: 1203.3995.
doi: 10.1353/ajm.2017.0009.![]() ![]() |
|
L. Evans
, Classical solutions of fully nonlinear convex, second order elliptic equations, Comm. Pure Applied Math., 35 (1982)
, 333-363.
doi: 10.1002/cpa.3160350303.![]() ![]() ![]() |
|
H. Fang
, M.-J. Lai
and X.-N. Ma
, On a class of fully nonlinear flows in Kähler geometry, J. Reine Angew. Math., 653 (2011)
, 189-220.
doi: 10.1515/crelle.2011.027.![]() ![]() ![]() |
|
J.-X. Fu
, On non-Kähler Calabi-Yau threefolds with Balanced metrics, Proc. Internat. Congress of Mathematicians, Hyderabad, India. New Delhi: Hindustan Book Agency, (2010)
, 705-716.
![]() ![]() |
|
A. Futaki
, H. Ono
and G.-F. Wang
, Transverse Kähler geometry of Sasaki manifolds and toric Sasaki-Einstein manifolds, J. Diff. Geom., 83 (2009)
, 585-635.
doi: 10.4310/jdg/1264601036.![]() ![]() ![]() |
|
P. Gauduchon
, La 1-forme de torsion d'une variété hermitienne compacte, Math. Ann., 267 (1984)
, 495-518.
doi: 10.1007/BF01455968.![]() ![]() ![]() |
|
J. Gauntlett
, D. Martelli
, J. Sparks
and D. Waldram
, A new infinite class of Sasaki-Einstein manifolds, Adv. Theor. Math. Phys., 8 (2004)
, 987-1000.
doi: 10.4310/ATMP.2004.v8.n6.a3.![]() ![]() ![]() |
|
M. Godlinski
, W. Kopczynski
and P. Nurowski
, Locally Sasakian manifolds, Classical quantum gravity, 17 (2000)
, 105-115.
doi: 10.1088/0264-9381/17/18/101.![]() ![]() ![]() |
|
B. Guan
, The Dirichlet problem for complex Monge-Ampère equations and regularity of the pluri-complex Green function, Comm. Anal. Geom., 6 (1998)
, 687-703.
doi: 10.4310/CAG.1998.v6.n4.a3.![]() ![]() ![]() |
|
B. Guan
, Second order estimates and regularity for fully nonlinear ellitpic equations on Riemannian manifolds, Duke Math. J., 163 (2014)
, 1491-1524.
doi: 10.1215/00127094-2713591.![]() ![]() ![]() |
|
B. Guan, The Dirichlet problem for fully nonlinear elliptic equations on Riemannian manifolds, preprint.
![]() |
|
B. Guan
and Q. Li
, The Dirichlet problem for a complex Monge-Ampère type equation on Hermitian manifolds, Adv. Math., 246 (2013)
, 351-367.
doi: 10.1016/j.aim.2013.07.006.![]() ![]() ![]() |
|
B. Guan and X. -L. Nie, Fully nonlinear elliptic equations on Hermitian manifolds, preprint.
![]() |
|
B. Guan
and W. Sun
, On a class of fully nonlinear elliptic equations on Hermitian manifolds, Calc. Var. PDE., 54 (2013)
, 901-916.
doi: 10.1007/s00526-014-0810-1.![]() ![]() ![]() |
|
B. Guan
, S.-J. Shi
and Z.-N. Sui
, On estimates for fully nonlinear parabolic equations on Riemannian manifolds, Anal. PDE., 8 (2015)
, 1145-1164.
doi: 10.2140/apde.2015.8.1145.![]() ![]() ![]() |
|
B. Guan
and J. Spruck
, Boundary-value problems on $\mathbb{S}^{n}$ for surfaces of constant Gauss curvature, Ann. Math., 138 (1993)
, 601-624.
doi: 10.2307/2946558.![]() ![]() ![]() |
|
P.-F. Guan
, The extremal function associated to intrinsic norms, Ann. Math., 156 (2002)
, 197-211.
doi: 10.2307/3597188.![]() ![]() ![]() |
|
P.-F. Guan
, N. Trudinger
and X.-J. Wang
, On the Dirichlet problem for degenerate Monge-Ampère equations, Acta Math., 182 (1999)
, 87-104.
doi: 10.1007/BF02392824.![]() ![]() ![]() |
|
P.-F. Guan
and X. Zhang
, A geodesic equation in the space of Sasake metrics, Geometry and Analysis, Adv. Lect. Math., Somerville: International Press, 17 (2011)
, 303-318.
![]() ![]() |
|
P.-F. Guan
and X. Zhang
, Regularity of the geodesic equation in the space of Sasake metrics, Adv. Math., 230 (2012)
, 321-371.
doi: 10.1016/j.aim.2011.12.002.![]() ![]() ![]() |
|
D. Hoffman
, H. Rosenberg
and J. Spruck
, Boundary value problems for surfaces of constant Gauss Curvature, Comm. Pure Applied Math., 45 (1992)
, 1051-1062.
doi: 10.1002/cpa.3160450807.![]() ![]() ![]() |
|
Z. Hou
, X.-N. Ma
and D.-M. Wu
, A second order estimate for complex Hessian equations on a compact Kähler manifold, Math. Res. Lett., 17 (2010)
, 547-561.
doi: 10.4310/MRL.2010.v17.n3.a12.![]() ![]() ![]() |
|
N. Ivochkina, The integral method of barrier functions and the Dirichlet problem for equations with operators of the Monge-Ampère type, (Russian)Mat. Sb. (N.S.), 112 (1980), 193-206; English transl.: Math. USSR Sb., 40 (1981), 179-192.
![]() ![]() |
|
N. Ivochkina
, N. Trudinger
and X.-J. Wang
, The Dirichlet problem for degenerate Hessian equations, Comm. PDE., 29 (2004)
, 219-235.
doi: 10.1081/PDE-120028851.![]() ![]() ![]() |
|
N. Krylov
, Boundedly inhomogeneous elliptic and parabolic equations in a domain, (Russian)Izv. Akad. Nauk SSSR Ser. Mat., 47 (1983)
, 75-108.
![]() ![]() |
|
Y.-Y. Li
, Some existence results of fully nonlinear elliptic equations of Monge-Ampère type, Comm. Pure Applied Math., 43 (1990)
, 233-271.
doi: 10.1002/cpa.3160430204.![]() ![]() ![]() |
|
Y.-Y. Li
, Degenerate conformally invariant fully nonlinear elliptic equations, Arch. Ration. Mech. Anal., 186 (2007)
, 25-51.
doi: 10.1007/s00205-006-0041-5.![]() ![]() ![]() |
|
T. Mabuchi
, Some symplectic geometry on Kähler manifolds. I, Osaka J. Math., 24 (1987)
, 227-252.
![]() ![]() |
|
D. Martelli
and J. Sparks
, Toric geometry, Sasaki-Einstein manifolds and a new infinite class of AdS/CFT duals, Comm. Math. Phys., 262 (2006)
, 51-89.
doi: 10.1007/s00220-005-1425-3.![]() ![]() ![]() |
|
D. Martelli
, J. Sparks
and S.-T. Yau
, Sasaki-Einstein manifolds and volume minimisation, Comm. Mathe. Phys., 280 (2008)
, 611-673.
doi: 10.1007/s00220-008-0479-4.![]() ![]() ![]() |
|
D. -H. Phong, S. Picard and X. -W. Zhang, On estimates for the Fu-Yau generalization of a Strominger system, arXiv: 1507.08193.
doi: 10.1515/crelle-2016-0052.![]() ![]() |
|
D.-H. Phong
and J. Sturm
, The Dirichlet problem for degenerate complex Monge-Ampère equations, Comm. Anal. Geom., 18 (2010)
, 145-170.
doi: 10.4310/CAG.2010.v18.n1.a6.![]() ![]() ![]() |
|
D. Popovici, Aeppli cohomology classes associated with Gauduchon metrics on compact complex manifolds, Bulletin de la SMF, 143 (2015), 763-800, arXiv: 1310.3685.
doi: 10.24033/bsmf.2704.![]() ![]() |
|
S. Semmes
, Complex Monge-Ampère and sympletic manifolds, Amer. J. Math., 114 (1992)
, 495-550.
doi: 10.2307/2374768.![]() ![]() ![]() |
|
J. Song
and B. Weinkove
, On the convergence and singularities of the J-Flow with applications to the Mabuchi energy, Comm. Pure Applied Math., 61 (2008)
, 210-229.
doi: 10.1002/cpa.20182.![]() ![]() ![]() |
|
W. Sun, Generalized complex Monge-Ampère type equations on closed Hermitian manifolds, arXiv: 1412.8192.
![]() |
|
G. Székelyhidi, Fully non-linear elliptic equations on compact Hermitian manifolds, arXiv: 1501.02762.
![]() |
|
G. Székelyhidi, V. Tosatti and B. Weinkove, Gauduchon metrics with prescribed volume form, arXiv: 1503.04491.
![]() |
|
M. E. Taylor,
Partial Differential Equations I, Basic Theory, New York, Berlin, Heidelberg: Applied Mathematical Sciences, 115, Springer-Verlag, 1996.
doi: 10.1007/978-1-4684-9320-7.![]() ![]() ![]() |
|
G. Tian
and S.-T. Yau
, Complete Kähler manifolds with zero Ricci curvature. I, J. Amer. Math. Soc., 3 (1990)
, 579-609.
doi: 10.2307/1990928.![]() ![]() ![]() |
|
V. Tosatti and B. Weinkove, Hermitian metrics, $(n-1, n-1)$ -forms and Monge-Ampère equations, arXiv: 1310.6326.
![]() |
|
N. Trudinger
, On the Dirichlet problem for Hessian equations, Acta Math., 175 (1995)
, 151-164.
doi: 10.1007/BF02393303.![]() ![]() ![]() |
|
S.-T. Yau
, On the Ricci curvature of a compact Kähler manifold and the complex Monge-Ampère equation. I, Comm. Pure Applied Math., 31 (1978)
, 339-411.
doi: 10.1002/cpa.3160310304.![]() ![]() ![]() |