November  2017, 37(11): 5763-5780. doi: 10.3934/dcds.2017250

On the uniqueness of an ergodic measure of full dimension for non-conformal repellers

Universidade Federal do Rio de Janeiro, Instituto de Matemática, Rio de Janeiro, 21941-909, RJ, Brazil

Received  June 2016 Revised  June 2017 Published  July 2017

We give a subclass $\mathcal{L}$ of Non-linear Lalley-Gatzouras carpets and an open set $\mathcal{U}$ in $\mathcal{L}$ such that any carpet in $\mathcal{U}$ has a unique ergodic measure of full dimension. In particular, any Lalley-Gatzouras carpet which is close to a non-trivial general Sierpinski carpet has a unique ergodic measure of full dimension.

Citation: Nuno Luzia. On the uniqueness of an ergodic measure of full dimension for non-conformal repellers. Discrete and Continuous Dynamical Systems, 2017, 37 (11) : 5763-5780. doi: 10.3934/dcds.2017250
References:
[1]

J. Barral and D.-J. Feng, Non-uniqueness of ergodic measures with full Hausdorff dimension on Gatzouras-Lalley carpet, Nonlinearity, 24 (2011), 2563-2567.  doi: 10.1088/0951-7715/24/9/010.

[2]

T. Bedford, Crinkly Curves, Markov Partitions and Box Dimension of Self Similar Sets, Ph. D thesis, University of Warwick, 1984.

[3]

R. Bowen, Equilibrium States and the Ergodic Theory of Anosov Diffeomorphisms, Lecture Notes in Mathematics, 470, Springer, 1975.

[4]

R. Bowen, Hausdorff dimension of quasi-circles, Publ. Math. I.H.E.S., 50 (1979), 11-25. 

[5]

T. Das and D. Simmons, The Hausdorff and dynamical dimensions of self-affine sponges: A dimension gap result, Invent. Math., (2017), 1-50.  doi: 10.1007/s00222-017-0725-5.

[6]

M. Denker and M. Gordin, Gibbs measures for fibred systems, Adv. Math., 148 (1999), 161-192.  doi: 10.1006/aima.1999.1843.

[7]

M. DenkerM. Gordin and S. Heinemann, On the relative variational principle for fibred expanding maps, Ergod. Th. & Dynam. Sys., 22 (2002), 757-782.  doi: 10.1017/S014338570200038X.

[8]

D.-J. Feng, Equilibrium states for factor maps between subshifts, Adv. Math., 226 (2011), 2470-2502.  doi: 10.1016/j.aim.2010.09.012.

[9]

D. Gatzouras and P. Lalley, Hausdorff and box dimensions of certain self-affine fractals, Indiana Univ. Math. J., 41 (1992), 533-568.  doi: 10.1512/iumj.1992.41.41031.

[10]

R. Kenyon and Y. Peres, Measures of full dimension on affine-invariant sets, Ergod. Th. & Dynam. Sys., 16 (1996), 307-323.  doi: 10.1017/S0143385700008828.

[11]

N. Luzia, A variational principle for the dimension for a class of non-conformal repellers, Ergod. Th. & Dynam. Sys., 26 (2006), 821-845.  doi: 10.1017/S0143385705000659.

[12]

N. Luzia, Measure of full dimension for a class of nonconformal repellers, Discrete Contin. Dyn. Syst., 26 (2010), 291-302.  doi: 10.3934/dcds.2010.26.291.

[13]

N. Luzia, Hausdorff dimension of certain random self-affine fractals, Stoch. Dyn., 11 (2011), 627-642.  doi: 10.1142/S0219493711003516.

[14]

C. McMullen, The Hausdorff dimension of general Sierpiński carpets, Nagoya Math. J., 96 (1984), 1-9.  doi: 10.1017/S0027763000021085.

[15]

E. Olivier, Uniqueness of the measure with full dimension on sofic affine-invariant subsets of the 2-torus, Ergod. Th. & Dynam. Sys., 30 (2010), 1503-1528.  doi: 10.1017/S0143385709000546.

[16]

F. Przytycki and M. Urbanski, Conformal Fractals: Ergodic Theory Methods, London Mathematical Society Lecture Note Series, 371, Cambridge University Press, 2010. doi: 10.1017/CBO9781139193184.

[17]

D. Ruelle, Repellers for real analytic maps, Ergod. Th. & Dynam. Sys., 2 (1982), 99-107.  doi: 10.1017/S0143385700009603.

[18]

D. Ruelle, Thermodynamic Formalism, 2$^{nd}$ edition, Cambridge University Press, 2004. doi: 10.1017/CBO9780511617546.

[19]

Ya. Sinai, Gibbs measures in ergodic theory, Uspehi Mat. Nauk, 27 (1972), 21-64; English translation: Russian Math. Surveys, 27 (1972), 21-69.

show all references

References:
[1]

J. Barral and D.-J. Feng, Non-uniqueness of ergodic measures with full Hausdorff dimension on Gatzouras-Lalley carpet, Nonlinearity, 24 (2011), 2563-2567.  doi: 10.1088/0951-7715/24/9/010.

[2]

T. Bedford, Crinkly Curves, Markov Partitions and Box Dimension of Self Similar Sets, Ph. D thesis, University of Warwick, 1984.

[3]

R. Bowen, Equilibrium States and the Ergodic Theory of Anosov Diffeomorphisms, Lecture Notes in Mathematics, 470, Springer, 1975.

[4]

R. Bowen, Hausdorff dimension of quasi-circles, Publ. Math. I.H.E.S., 50 (1979), 11-25. 

[5]

T. Das and D. Simmons, The Hausdorff and dynamical dimensions of self-affine sponges: A dimension gap result, Invent. Math., (2017), 1-50.  doi: 10.1007/s00222-017-0725-5.

[6]

M. Denker and M. Gordin, Gibbs measures for fibred systems, Adv. Math., 148 (1999), 161-192.  doi: 10.1006/aima.1999.1843.

[7]

M. DenkerM. Gordin and S. Heinemann, On the relative variational principle for fibred expanding maps, Ergod. Th. & Dynam. Sys., 22 (2002), 757-782.  doi: 10.1017/S014338570200038X.

[8]

D.-J. Feng, Equilibrium states for factor maps between subshifts, Adv. Math., 226 (2011), 2470-2502.  doi: 10.1016/j.aim.2010.09.012.

[9]

D. Gatzouras and P. Lalley, Hausdorff and box dimensions of certain self-affine fractals, Indiana Univ. Math. J., 41 (1992), 533-568.  doi: 10.1512/iumj.1992.41.41031.

[10]

R. Kenyon and Y. Peres, Measures of full dimension on affine-invariant sets, Ergod. Th. & Dynam. Sys., 16 (1996), 307-323.  doi: 10.1017/S0143385700008828.

[11]

N. Luzia, A variational principle for the dimension for a class of non-conformal repellers, Ergod. Th. & Dynam. Sys., 26 (2006), 821-845.  doi: 10.1017/S0143385705000659.

[12]

N. Luzia, Measure of full dimension for a class of nonconformal repellers, Discrete Contin. Dyn. Syst., 26 (2010), 291-302.  doi: 10.3934/dcds.2010.26.291.

[13]

N. Luzia, Hausdorff dimension of certain random self-affine fractals, Stoch. Dyn., 11 (2011), 627-642.  doi: 10.1142/S0219493711003516.

[14]

C. McMullen, The Hausdorff dimension of general Sierpiński carpets, Nagoya Math. J., 96 (1984), 1-9.  doi: 10.1017/S0027763000021085.

[15]

E. Olivier, Uniqueness of the measure with full dimension on sofic affine-invariant subsets of the 2-torus, Ergod. Th. & Dynam. Sys., 30 (2010), 1503-1528.  doi: 10.1017/S0143385709000546.

[16]

F. Przytycki and M. Urbanski, Conformal Fractals: Ergodic Theory Methods, London Mathematical Society Lecture Note Series, 371, Cambridge University Press, 2010. doi: 10.1017/CBO9781139193184.

[17]

D. Ruelle, Repellers for real analytic maps, Ergod. Th. & Dynam. Sys., 2 (1982), 99-107.  doi: 10.1017/S0143385700009603.

[18]

D. Ruelle, Thermodynamic Formalism, 2$^{nd}$ edition, Cambridge University Press, 2004. doi: 10.1017/CBO9780511617546.

[19]

Ya. Sinai, Gibbs measures in ergodic theory, Uspehi Mat. Nauk, 27 (1972), 21-64; English translation: Russian Math. Surveys, 27 (1972), 21-69.

[1]

Juan Wang, Yongluo Cao, Yun Zhao. Dimension estimates in non-conformal setting. Discrete and Continuous Dynamical Systems, 2014, 34 (9) : 3847-3873. doi: 10.3934/dcds.2014.34.3847

[2]

Robert Eymard, Angela Handlovičová, Karol Mikula. Approximation of nonlinear parabolic equations using a family of conformal and non-conformal schemes. Communications on Pure and Applied Analysis, 2012, 11 (1) : 147-172. doi: 10.3934/cpaa.2012.11.147

[3]

Luis Barreira and Jorg Schmeling. Invariant sets with zero measure and full Hausdorff dimension. Electronic Research Announcements, 1997, 3: 114-118.

[4]

Nuno Luzia. Measure of full dimension for some nonconformal repellers. Discrete and Continuous Dynamical Systems, 2010, 26 (1) : 291-302. doi: 10.3934/dcds.2010.26.291

[5]

Jialu Fang, Yongluo Cao, Yun Zhao. Measure theoretic pressure and dimension formula for non-ergodic measures. Discrete and Continuous Dynamical Systems, 2020, 40 (5) : 2767-2789. doi: 10.3934/dcds.2020149

[6]

Tomasz Szarek, Mariusz Urbański, Anna Zdunik. Continuity of Hausdorff measure for conformal dynamical systems. Discrete and Continuous Dynamical Systems, 2013, 33 (10) : 4647-4692. doi: 10.3934/dcds.2013.33.4647

[7]

Richard Sharp. Conformal Markov systems, Patterson-Sullivan measure on limit sets and spectral triples. Discrete and Continuous Dynamical Systems, 2016, 36 (5) : 2711-2727. doi: 10.3934/dcds.2016.36.2711

[8]

Kanji Inui, Hikaru Okada, Hiroki Sumi. The Hausdorff dimension function of the family of conformal iterated function systems of generalized complex continued fractions. Discrete and Continuous Dynamical Systems, 2020, 40 (2) : 753-766. doi: 10.3934/dcds.2020060

[9]

Nasab Yassine. Quantitative recurrence of some dynamical systems preserving an infinite measure in dimension one. Discrete and Continuous Dynamical Systems, 2018, 38 (1) : 343-361. doi: 10.3934/dcds.2018017

[10]

Olof Heden, Denis S. Krotov. On the structure of non-full-rank perfect $q$-ary codes. Advances in Mathematics of Communications, 2011, 5 (2) : 149-156. doi: 10.3934/amc.2011.5.149

[11]

Fatemeh Ahangari. Conformal deformations of a specific class of lorentzian manifolds with non-irreducible holonomy representation. Numerical Algebra, Control and Optimization, 2019, 9 (4) : 401-412. doi: 10.3934/naco.2019039

[12]

Yunping Jiang, Yuan-Ling Ye. Convergence speed of a Ruelle operator associated with a non-uniformly expanding conformal dynamical system and a Dini potential. Discrete and Continuous Dynamical Systems, 2018, 38 (9) : 4693-4713. doi: 10.3934/dcds.2018206

[13]

David Färm, Tomas Persson. Dimension and measure of baker-like skew-products of $\boldsymbol{\beta}$-transformations. Discrete and Continuous Dynamical Systems, 2012, 32 (10) : 3525-3537. doi: 10.3934/dcds.2012.32.3525

[14]

Yuanfen Xiao. Mean Li-Yorke chaotic set along polynomial sequence with full Hausdorff dimension for $ \beta $-transformation. Discrete and Continuous Dynamical Systems, 2021, 41 (2) : 525-536. doi: 10.3934/dcds.2020267

[15]

Jon Chaika, Howard Masur. There exists an interval exchange with a non-ergodic generic measure. Journal of Modern Dynamics, 2015, 9: 289-304. doi: 10.3934/jmd.2015.9.289

[16]

Tomasz Downarowicz, Benjamin Weiss. Pure strictly uniform models of non-ergodic measure automorphisms. Discrete and Continuous Dynamical Systems, 2022, 42 (2) : 863-884. doi: 10.3934/dcds.2021140

[17]

Xin Liu, Yongjin Lu, Xin-Guang Yang. Stability and dynamics for a nonlinear one-dimensional full compressible non-Newtonian fluids. Evolution Equations and Control Theory, 2021, 10 (2) : 365-384. doi: 10.3934/eect.2020071

[18]

Yuan-Ling Ye. Non-uniformly expanding dynamical systems: Multi-dimension. Discrete and Continuous Dynamical Systems, 2019, 39 (5) : 2511-2553. doi: 10.3934/dcds.2019106

[19]

Vanderlei Horita, Marcelo Viana. Hausdorff dimension for non-hyperbolic repellers II: DA diffeomorphisms. Discrete and Continuous Dynamical Systems, 2005, 13 (5) : 1125-1152. doi: 10.3934/dcds.2005.13.1125

[20]

Fernando J. Sánchez-Salas. Dimension of Markov towers for non uniformly expanding one-dimensional systems. Discrete and Continuous Dynamical Systems, 2003, 9 (6) : 1447-1464. doi: 10.3934/dcds.2003.9.1447

2020 Impact Factor: 1.392

Metrics

  • PDF downloads (148)
  • HTML views (72)
  • Cited by (0)

Other articles
by authors

[Back to Top]