November  2017, 37(11): 5819-5841. doi: 10.3934/dcds.2017253

Energy transfer model for the derivative nonlinear Schrödinger equations on the torus

Department of Mathematics, Kobe University, 1-1, Rokkodai, Nada-ku, Kobe 657-8501, Japan

* Dedicated to Professor Yoshio Tsutsumi on his 60th birthday

Received  September 2016 Revised  June 2017 Published  July 2017

Fund Project: The author is supported by supported by JSPS KAKENHI Grant Number 10322794.

We consider the nonlinear derivative Schrödinger equation with a quintic nonlinearity, on the one dimensional torus. We exhibit that the nonlinear dynamic properties of the particular solution consisting of four frequency modes initially excited, whose frequencies include the resonant clusters and phase matched resonant interactions of nonlinearities. The proof is based on the analysis of resonant dynamics via a finite dimensional ordinary differential system.

Citation: Hideo Takaoka. Energy transfer model for the derivative nonlinear Schrödinger equations on the torus. Discrete & Continuous Dynamical Systems - A, 2017, 37 (11) : 5819-5841. doi: 10.3934/dcds.2017253
References:
[1]

H. A. Biagioni and F. Linares, Ill-posedness for the derivative Schrödinger and generalized Benjamin-Ono equations, Trans. Amer. Math. Soc., 353 (2001), 3649-3659.  doi: 10.1090/S0002-9947-01-02754-4.  Google Scholar

[2]

P. Clarkson and C. Cosgrove, Painlevé analysis of the non-linear Schrödinger family of equations, J. Phys. A: Math. Gen., 20 (1987), 2003-2024.  doi: 10.1088/0305-4470/20/8/020.  Google Scholar

[3]

J. CollianderM. KeelG. StaffilaniH. Takaoka and T. Tao, Sharp global well-posedness for KdV and modified KdV on $\mathbb{R}$ and $\mathbb{T}$, J. Amer. Math. Soc., 16 (2003), 705-749.  doi: 10.1090/S0894-0347-03-00421-1.  Google Scholar

[4]

J. CollianderM. KeelG. StaffilaniH. Takaoka and T. Tao, A refined global well-posedness result for Schrödinger equations with derivative, SIAM J. Math. Anal., 34 (2002), 64-86.  doi: 10.1137/S0036141001394541.  Google Scholar

[5]

J. CollianderM. KeelG. StaffilaniH. Takaoka and T. Tao, Global well-posedness for Schrödinger equations with derivative, SIAM J. Math. Anal., 33 (2001), 649-669.  doi: 10.1137/S0036141001384387.  Google Scholar

[6]

J. CollianderM. KeelG. StaffilaniH. Takaoka and T. Tao, Transfer of energy to high frequencies in the cubic defocusing nonlinear Schrödinger equation, Invent. Math., 181 (2010), 39-113.  doi: 10.1007/s00222-010-0242-2.  Google Scholar

[7]

B. Grébert and L. Thomann, Resonant dynamics for the quintic nonlinear Schrödinger equation, Ann. Inst. H. Poincaré Anal. Non Linéaire, 29 (2012), 455-477.  doi: 10.1016/j.anihpc.2012.01.005.  Google Scholar

[8]

A. Grünrock and S. Herr, Low regularity local well-posedness of the derivative nonlinear Schrödinger equation with periodic initial data, SIAM J. Math. Anal., 39 (2008), 1890-1920.  doi: 10.1137/070689139.  Google Scholar

[9]

E. Haus and M. Procesi, KAM for beating solutions of the quintic NLS, Comm. Math. Phys., 354 (2017), 1101-1132.  doi: 10.1007/s00220-017-2925-7.  Google Scholar

[10]

N. Hayashi, The initial value problem for the derivative nonlinear Schrödinger equation in the energy space, Nonlinear Anal., 20 (1993), 823-833.  doi: 10.1016/0362-546X(93)90071-Y.  Google Scholar

[11]

N. Hayashi and T. Ozawa, On the derivative nonlinear Schrödinger equation, Phys. D, 55 (1992), 14-36.  doi: 10.1016/0167-2789(92)90185-P.  Google Scholar

[12]

S. Herr, On the Cauchy problem for the derivative nonlinear Schrödinger equation with periodic boundary condition, Int. Math. Res. Not. , (2006), Art. ID 96763, 33 pp. doi: 10.1155/IMRN/2006/96763.  Google Scholar

[13]

C. MiaoY. Wu and G. Xu, Global well-posedness for Schrödinger equation with derivative in $H(\mathbb{R})^{\frac{1}{2}}$, J. Differential Equations, 251 (2011), 2164-2195.  doi: 10.1016/j.jde.2011.07.004.  Google Scholar

[14]

A. NahmodT. OhL. Rey-Bellet and G. Staffilani, Invariant weighted Wiener measures and almost sure global well-posedness for the periodic derivative NLS, J. Eur. Math. Soc., 14 (2012), 1275-1330.  doi: 10.4171/JEMS/333.  Google Scholar

[15]

T. Ozawa, On the nonlinear Schrödinger equations of derivative type, Indiana Univ. Math. J., 45 (1996), 137-163.  doi: 10.1512/iumj.1996.45.1962.  Google Scholar

[16]

H. Takaoka, Well-posedness for the one dimensional nonlinear Schrödinger equation with the derivative nonlinearity, Adv. Differential Equations, 4 (1999), 561-580.   Google Scholar

[17]

H. Takaoka, A priori estimates and weak solutions for the derivative nonlinear Schrödinger equation on torus below $H^{1/2}$, J. Differential Equations, 260 (2016), 818-859.  doi: 10.1016/j.jde.2015.09.011.  Google Scholar

[18]

Y. Y. S. Win, Global well-posedness of the derivative nonlinear Schrödinger equations on $\mathbf{T}$, Funkcial. Ekvac., 53 (2010), 51-88.  doi: 10.1619/fesi.53.51.  Google Scholar

show all references

References:
[1]

H. A. Biagioni and F. Linares, Ill-posedness for the derivative Schrödinger and generalized Benjamin-Ono equations, Trans. Amer. Math. Soc., 353 (2001), 3649-3659.  doi: 10.1090/S0002-9947-01-02754-4.  Google Scholar

[2]

P. Clarkson and C. Cosgrove, Painlevé analysis of the non-linear Schrödinger family of equations, J. Phys. A: Math. Gen., 20 (1987), 2003-2024.  doi: 10.1088/0305-4470/20/8/020.  Google Scholar

[3]

J. CollianderM. KeelG. StaffilaniH. Takaoka and T. Tao, Sharp global well-posedness for KdV and modified KdV on $\mathbb{R}$ and $\mathbb{T}$, J. Amer. Math. Soc., 16 (2003), 705-749.  doi: 10.1090/S0894-0347-03-00421-1.  Google Scholar

[4]

J. CollianderM. KeelG. StaffilaniH. Takaoka and T. Tao, A refined global well-posedness result for Schrödinger equations with derivative, SIAM J. Math. Anal., 34 (2002), 64-86.  doi: 10.1137/S0036141001394541.  Google Scholar

[5]

J. CollianderM. KeelG. StaffilaniH. Takaoka and T. Tao, Global well-posedness for Schrödinger equations with derivative, SIAM J. Math. Anal., 33 (2001), 649-669.  doi: 10.1137/S0036141001384387.  Google Scholar

[6]

J. CollianderM. KeelG. StaffilaniH. Takaoka and T. Tao, Transfer of energy to high frequencies in the cubic defocusing nonlinear Schrödinger equation, Invent. Math., 181 (2010), 39-113.  doi: 10.1007/s00222-010-0242-2.  Google Scholar

[7]

B. Grébert and L. Thomann, Resonant dynamics for the quintic nonlinear Schrödinger equation, Ann. Inst. H. Poincaré Anal. Non Linéaire, 29 (2012), 455-477.  doi: 10.1016/j.anihpc.2012.01.005.  Google Scholar

[8]

A. Grünrock and S. Herr, Low regularity local well-posedness of the derivative nonlinear Schrödinger equation with periodic initial data, SIAM J. Math. Anal., 39 (2008), 1890-1920.  doi: 10.1137/070689139.  Google Scholar

[9]

E. Haus and M. Procesi, KAM for beating solutions of the quintic NLS, Comm. Math. Phys., 354 (2017), 1101-1132.  doi: 10.1007/s00220-017-2925-7.  Google Scholar

[10]

N. Hayashi, The initial value problem for the derivative nonlinear Schrödinger equation in the energy space, Nonlinear Anal., 20 (1993), 823-833.  doi: 10.1016/0362-546X(93)90071-Y.  Google Scholar

[11]

N. Hayashi and T. Ozawa, On the derivative nonlinear Schrödinger equation, Phys. D, 55 (1992), 14-36.  doi: 10.1016/0167-2789(92)90185-P.  Google Scholar

[12]

S. Herr, On the Cauchy problem for the derivative nonlinear Schrödinger equation with periodic boundary condition, Int. Math. Res. Not. , (2006), Art. ID 96763, 33 pp. doi: 10.1155/IMRN/2006/96763.  Google Scholar

[13]

C. MiaoY. Wu and G. Xu, Global well-posedness for Schrödinger equation with derivative in $H(\mathbb{R})^{\frac{1}{2}}$, J. Differential Equations, 251 (2011), 2164-2195.  doi: 10.1016/j.jde.2011.07.004.  Google Scholar

[14]

A. NahmodT. OhL. Rey-Bellet and G. Staffilani, Invariant weighted Wiener measures and almost sure global well-posedness for the periodic derivative NLS, J. Eur. Math. Soc., 14 (2012), 1275-1330.  doi: 10.4171/JEMS/333.  Google Scholar

[15]

T. Ozawa, On the nonlinear Schrödinger equations of derivative type, Indiana Univ. Math. J., 45 (1996), 137-163.  doi: 10.1512/iumj.1996.45.1962.  Google Scholar

[16]

H. Takaoka, Well-posedness for the one dimensional nonlinear Schrödinger equation with the derivative nonlinearity, Adv. Differential Equations, 4 (1999), 561-580.   Google Scholar

[17]

H. Takaoka, A priori estimates and weak solutions for the derivative nonlinear Schrödinger equation on torus below $H^{1/2}$, J. Differential Equations, 260 (2016), 818-859.  doi: 10.1016/j.jde.2015.09.011.  Google Scholar

[18]

Y. Y. S. Win, Global well-posedness of the derivative nonlinear Schrödinger equations on $\mathbf{T}$, Funkcial. Ekvac., 53 (2010), 51-88.  doi: 10.1619/fesi.53.51.  Google Scholar

[1]

Scipio Cuccagna, Masaya Maeda. A survey on asymptotic stability of ground states of nonlinear Schrödinger equations II. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020450

[2]

Andrew Comech, Scipio Cuccagna. On asymptotic stability of ground states of some systems of nonlinear Schrödinger equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1225-1270. doi: 10.3934/dcds.2020316

[3]

Serge Dumont, Olivier Goubet, Youcef Mammeri. Decay of solutions to one dimensional nonlinear Schrödinger equations with white noise dispersion. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020456

[4]

Noriyoshi Fukaya. Uniqueness and nondegeneracy of ground states for nonlinear Schrödinger equations with attractive inverse-power potential. Communications on Pure & Applied Analysis, 2021, 20 (1) : 121-143. doi: 10.3934/cpaa.2020260

[5]

Jason Murphy, Kenji Nakanishi. Failure of scattering to solitary waves for long-range nonlinear Schrödinger equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1507-1517. doi: 10.3934/dcds.2020328

[6]

Riadh Chteoui, Abdulrahman F. Aljohani, Anouar Ben Mabrouk. Classification and simulation of chaotic behaviour of the solutions of a mixed nonlinear Schrödinger system. Electronic Research Archive, , () : -. doi: 10.3934/era.2021002

[7]

Haoyu Li, Zhi-Qiang Wang. Multiple positive solutions for coupled Schrödinger equations with perturbations. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020294

[8]

Zhouxin Li, Yimin Zhang. Ground states for a class of quasilinear Schrödinger equations with vanishing potentials. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020298

[9]

Kihoon Seong. Low regularity a priori estimates for the fourth order cubic nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5437-5473. doi: 10.3934/cpaa.2020247

[10]

Zedong Yang, Guotao Wang, Ravi P. Agarwal, Haiyong Xu. Existence and nonexistence of entire positive radial solutions for a class of Schrödinger elliptic systems involving a nonlinear operator. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020436

[11]

José Luis López. A quantum approach to Keller-Segel dynamics via a dissipative nonlinear Schrödinger equation. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020376

[12]

Claudianor O. Alves, Rodrigo C. M. Nemer, Sergio H. Monari Soares. The use of the Morse theory to estimate the number of nontrivial solutions of a nonlinear Schrödinger equation with a magnetic field. Communications on Pure & Applied Analysis, 2021, 20 (1) : 449-465. doi: 10.3934/cpaa.2020276

[13]

Alex H. Ardila, Mykael Cardoso. Blow-up solutions and strong instability of ground states for the inhomogeneous nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2021, 20 (1) : 101-119. doi: 10.3934/cpaa.2020259

[14]

Van Duong Dinh. Random data theory for the cubic fourth-order nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020284

[15]

Masaru Hamano, Satoshi Masaki. A sharp scattering threshold level for mass-subcritical nonlinear Schrödinger system. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1415-1447. doi: 10.3934/dcds.2020323

[16]

Jose Anderson Cardoso, Patricio Cerda, Denilson Pereira, Pedro Ubilla. Schrödinger Equations with vanishing potentials involving Brezis-Kamin type problems. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020392

[17]

Li Cai, Fubao Zhang. The Brezis-Nirenberg type double critical problem for a class of Schrödinger-Poisson equations. Electronic Research Archive, , () : -. doi: 10.3934/era.2020125

[18]

Justin Holmer, Chang Liu. Blow-up for the 1D nonlinear Schrödinger equation with point nonlinearity II: Supercritical blow-up profiles. Communications on Pure & Applied Analysis, 2021, 20 (1) : 215-242. doi: 10.3934/cpaa.2020264

[19]

Oussama Landoulsi. Construction of a solitary wave solution of the nonlinear focusing schrödinger equation outside a strictly convex obstacle in the $ L^2 $-supercritical case. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 701-746. doi: 10.3934/dcds.2020298

[20]

Xiyou Cheng, Zhitao Zhang. Structure of positive solutions to a class of Schrödinger systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020461

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (73)
  • HTML views (88)
  • Cited by (0)

Other articles
by authors

[Back to Top]