November  2017, 37(11): 5843-5859. doi: 10.3934/dcds.2017254

Estimating the fractal dimension of sets determined by nonergodic parameters

University of California Irvine, Department of Mathematics, 440V Rowland Hall, Irvine, CA 92697-3875, USA

Received  September 2016 Revised  June 2017 Published  July 2017

Fund Project: This work was supported by NSF grant DGE-0841164.

Given fixed and irrational $0<α, θ<1$, consider the billiard table $B_{α}$ formed by a $\frac{1}{2}×1$ rectangle with a horizontal barrier of length $α$ emanating from the midpoint of a vertical side and a billiard flow with trajectory angle $θ$. In 1969, Veech introduced two subsets $K_{0}(θ)$ and $K_{1}(θ)$ of $\mathbb{R}/\mathbb{Z}$ that are defined in terms of the continued fraction representation of $θ∈\mathbb{R}/\mathbb{Z}$, and Veech showed that these sets have Hausdorff dimension $0$ when $θ$ is rational. Moreover, the set $K_{1}(θ)$ describes the set of all $α$ such that the billiard flow on $B_{α}$ in direction $θ$ is nonergodic. We show that the Hausdorff dimension of the sets $K_{0}(θ)$ and $K_{1}(θ)$ can attain any value in $[0, 1]$ by considering the continued fraction expansion of $θ$. This result resolves an analogue of work completed by Cheung, Hubert, and Pascal in which they consider, for fixed $α$, the set of $θ$ such that the flow on $B_{α}$ in direction $θ$ is nonergodic.

Citation: Joseph Squillace. Estimating the fractal dimension of sets determined by nonergodic parameters. Discrete & Continuous Dynamical Systems - A, 2017, 37 (11) : 5843-5859. doi: 10.3934/dcds.2017254
References:
[1]

Y. Cheung, Hausdorff dimension of the set of points on divergent trajectories of a homogeneous flow on a product space, Ergod. Th. Dynam. Sys., 27 (2007), 65-85.  doi: 10.1017/S0143385706000678.  Google Scholar

[2]

Y. Cheung, Hausdorff dimension of the set of singular pairs, Annals of Mathematics, 173 (2011), 127-167.  doi: 10.4007/annals.2011.173.1.4.  Google Scholar

[3]

Y. Cheung and A. Eskin, Slow divergence and unique ergodicity, Fields Institute Communications, 51 (2007), 213-222.   Google Scholar

[4]

Y. CheungP. Hubert and H. Masur, Dichotomy for the Hausdorff dimension of the set of nonergodic directions, Inventiones, 183 (2001), 337-383.  doi: 10.1007/s00222-010-0279-2.  Google Scholar

[5]

K. Falconer, Fractal Geometry: Mathematical Foundations and Applications, John Wiley and Sons, Chichester, 1990.  Google Scholar

[6]

H. Masur and S. Tabachnikov, Rational billiards and flat surfaces, Handbook of Dynamical Systems, 1A (2002), 1015-1089.  doi: 10.1016/S1874-575X(02)80015-7.  Google Scholar

[7]

L. Narins, Oral communication, 2013. Google Scholar

[8]

W. Veech, Strict ergodicity in zero dimensional dynamical systems and the Kronecker-Weyl theorem modulo 2, Trans. Amer. Math. Soc., 140 (1969), 1-33.  doi: 10.2307/1995120.  Google Scholar

show all references

References:
[1]

Y. Cheung, Hausdorff dimension of the set of points on divergent trajectories of a homogeneous flow on a product space, Ergod. Th. Dynam. Sys., 27 (2007), 65-85.  doi: 10.1017/S0143385706000678.  Google Scholar

[2]

Y. Cheung, Hausdorff dimension of the set of singular pairs, Annals of Mathematics, 173 (2011), 127-167.  doi: 10.4007/annals.2011.173.1.4.  Google Scholar

[3]

Y. Cheung and A. Eskin, Slow divergence and unique ergodicity, Fields Institute Communications, 51 (2007), 213-222.   Google Scholar

[4]

Y. CheungP. Hubert and H. Masur, Dichotomy for the Hausdorff dimension of the set of nonergodic directions, Inventiones, 183 (2001), 337-383.  doi: 10.1007/s00222-010-0279-2.  Google Scholar

[5]

K. Falconer, Fractal Geometry: Mathematical Foundations and Applications, John Wiley and Sons, Chichester, 1990.  Google Scholar

[6]

H. Masur and S. Tabachnikov, Rational billiards and flat surfaces, Handbook of Dynamical Systems, 1A (2002), 1015-1089.  doi: 10.1016/S1874-575X(02)80015-7.  Google Scholar

[7]

L. Narins, Oral communication, 2013. Google Scholar

[8]

W. Veech, Strict ergodicity in zero dimensional dynamical systems and the Kronecker-Weyl theorem modulo 2, Trans. Amer. Math. Soc., 140 (1969), 1-33.  doi: 10.2307/1995120.  Google Scholar

Figure 1.  A billiard table $B_{\alpha}$ with a barrier of length $\alpha$.
Figure 2.  Unfolding of billiard table $B_{\alpha}$.
[1]

Thomas Y. Hou, Ruo Li. Nonexistence of locally self-similar blow-up for the 3D incompressible Navier-Stokes equations. Discrete & Continuous Dynamical Systems - A, 2007, 18 (4) : 637-642. doi: 10.3934/dcds.2007.18.637

[2]

Charlene Kalle, Niels Langeveld, Marta Maggioni, Sara Munday. Matching for a family of infinite measure continued fraction transformations. Discrete & Continuous Dynamical Systems - A, 2020, 40 (11) : 6309-6330. doi: 10.3934/dcds.2020281

[3]

Tuvi Etzion, Alexander Vardy. On $q$-analogs of Steiner systems and covering designs. Advances in Mathematics of Communications, 2011, 5 (2) : 161-176. doi: 10.3934/amc.2011.5.161

[4]

Daoyuan Fang, Ting Zhang. Compressible Navier-Stokes equations with vacuum state in one dimension. Communications on Pure & Applied Analysis, 2004, 3 (4) : 675-694. doi: 10.3934/cpaa.2004.3.675

[5]

Alexander A. Davydov, Massimo Giulietti, Stefano Marcugini, Fernanda Pambianco. Linear nonbinary covering codes and saturating sets in projective spaces. Advances in Mathematics of Communications, 2011, 5 (1) : 119-147. doi: 10.3934/amc.2011.5.119

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (59)
  • HTML views (76)
  • Cited by (0)

Other articles
by authors

[Back to Top]