November  2017, 37(11): 5861-5881. doi: 10.3934/dcds.2017255

Hitting times distribution and extreme value laws for semi-flows

Instituto de Matemática, Universidade Federal do Rio de Janeiro, C. P. 68.530, CEP 21.945-970, Rio de Janeiro, RJ, Brazil

* Corresponding author: Fan Yang

Received  September 2016 Revised  June 2017 Published  July 2017

Fund Project: Maria José Pacifico is partially supported by CNPq, FAPERJ.
Fan Yang is partially supported by CAPES.

For flows whose return map on a cross section has sufficient mixing property, we show that the hitting time distribution of the flow to balls is exponential in limit. We also establish a link between the extreme value distribution of the flow and its hitting time distribution, generalizing a previous work by Freitas et al in the discrete time case. Finally we show that for maps that can be modeled by Young's tower with polynomial tail, the extreme value laws hold.

Citation: Maria José Pacifico, Fan Yang. Hitting times distribution and extreme value laws for semi-flows. Discrete & Continuous Dynamical Systems, 2017, 37 (11) : 5861-5881. doi: 10.3934/dcds.2017255
References:
[1]

V. S. AfraimovicV. V. Bykov and L. P. Silnikov, The origin and structure of the Lorenz attractor, Dokl. Akad. Nauk., 234 (1977), 336-339.  doi: 10.2307/2152750.  Google Scholar

[2]

V. Araújo and M. J. Pacifico, Three-Dimensional Flows, volume 53 of Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics]. Springer, Heidelberg, 2010.  Google Scholar

[3]

V. AraújoM. J. PacificoE. R. Pujals and M. Viana, Singular-hyperbolic attractors are chaotic, Trans. Amer. Math. Soc., 361 (2009), 2431-2485.  doi: 10.1090/S0002-9947-08-04595-9.  Google Scholar

[4]

J. R. Chazottes and P. Collet, Poisson approximation for the number of visits to balls in nonuniformly hyperbolic dynamical systems, Ergod. Th. & Dynam. Sys., 33 (2013), 49-80.  doi: 10.1017/S0143385711000897.  Google Scholar

[5]

P. Collet, Statistics of closest return for some non-uniformly hyperbolic systems, Ergod. Th. & Dynam. Sys., 21 (2001), 401-420.  doi: 10.1017/S0143385701001201.  Google Scholar

[6]

A. C. M. Freitas and J. M. Freitas, On the link between dependence and independence in extreme value theory for dynamical systems, Stat. Probab. Lett., 78 (2008), 1088-1093.  doi: 10.1016/j.spl.2007.11.002.  Google Scholar

[7]

A. C. M. FreitasJ. M. Freitas and M. Todd, Hitting time statistics and extreme value theory, Probab. Theory Related Fields, 147 (2010), 675-710.  doi: 10.1007/s00440-009-0221-y.  Google Scholar

[8]

A. C. M. FreitasJ. M. Freitas and M. Todd, Extreme value laws in dynamical systems for non-smooth observations, J. Stat. Phys., 142 (2011), 108-126.  doi: 10.1007/s10955-010-0096-4.  Google Scholar

[9]

J. M. FreitasN. Haydn and M. Nicol, Convergence of rare event point processes to the Poisson process for planar billiards, Nonlinearity, 27 (2014), 1669-1687.  doi: 10.1088/0951-7715/27/7/1669.  Google Scholar

[10]

S. Galatolo, I. Nisoli and M. J. Pacifico, Decay of correlations and logarithm laws for Rovella attractors, preprint, arXiv: 1701.08743. Google Scholar

[11]

S. Galatolo and M. J. Pacifico, Lorenz like flows: Exponential decay of correlations for the poincaré map, logarithm law, quantitative recurrence, Ergodic Theory and Dynamical Systems, 30 (2010), 1703-1737.  doi: 10.1017/S0143385709000856.  Google Scholar

[12]

J. Guckenheimer and R. F. Williams, Structural stability of Lorenz attractors, Inst. Hautes Études Sci., 50 (1979), 59-72.   Google Scholar

[13]

C. GuptaM. Holland and M. Nicol, Extreme value theory and return time statistics for dispersing billard maps and flows, Lozi maps and Lorenz-like maps, Ergod. Th. & Dynam. Sys., 31 (2011), 1363-1390.  doi: 10.1017/S014338571000057X.  Google Scholar

[14]

N. Haydn and K. Wassilewska, Limiting distribution and error terms for the number of visits to balls in non-uniformly hyperbolic dynamical systems, Discrete Contin. Dyn. Sys., 36 (2016), 2585-2611.  doi: 10.3934/dcds.2016.36.2585.  Google Scholar

[15]

M. Hirata, Poisson law for Axiom A diffeomorphisms, Ergod. Th. & Dynam. Sys., 13 (1993), 533-556.  doi: 10.1017/S0143385700007513.  Google Scholar

[16]

M. HirataB. Saussol and S. Vaienti, Statistics of return times: A general framework and new applications, Comm. Math. Phys., 206 (1999), 33-55.  doi: 10.1007/s002200050697.  Google Scholar

[17]

M. HollandM. Nicol and A. Török, Extreme value theory for non-uniformly expanding dynamical systems, Trans. Amer. Math. Soc., 364 (2012), 661-688.  doi: 10.1090/S0002-9947-2011-05271-2.  Google Scholar

[18]

M. R. Leadbetter, G. Lindgren and H. Rootzén, Extremes and Related Properties of Random Sequences and Processes, Springer Series in Statistics, Springer-Verlag, New York, 1983.  Google Scholar

[19]

E. N. Lorenz, Deterministic nonperiodic flow, The Theory of Chaotic Attractors, (2004), 25-36.  doi: 10.1007/978-0-387-21830-4_2.  Google Scholar

[20]

V. Lucarini, D. Faranda, A. C. M. Freitas, J. M. Freitas, M. Holland, T. Kuna, M. Nicol and S. Vaienti, Extremes and Recurrence in Dynamical Systems, Pure and Applied Mathematics: A Wiley Series of Texts, Monographs and Tracts, Wiley, Hoboken, NJ, 2016. doi: 10.1002/9781118632321.  Google Scholar

[21]

P. Mattila, J. Marklof, Entry and return times for semi-flows, Nonlinearity, 30 (2017), 810-824, arXiv: 1605.02715. doi: 10.1088/1361-6544/aa518b.  Google Scholar

[22]

P. Mattila, Geometry of Sets and Measures in Euclidean Spaces, 1$^{st}$ ed. Cambridge: Cambridge University Press, 1995. doi: 10.1017/CBO9780511623813.  Google Scholar

[23]

C. A. MoralesM. J. Pacifico and E. R. Pujals, Singular hyperbolic systems, Proc. Am. Math. Soc., 127 (1999), 3393-3401.  doi: 10.1090/S0002-9939-99-04936-9.  Google Scholar

[24]

F. Péne and B. Saussol, Poisson law for some non-uniformly hyperbolic dynamical systems with polynomial rate of mixing, Ergod. Th. & Dynam. Sys., 36 (2016), 2602-2626.  doi: 10.1017/etds.2015.28.  Google Scholar

[25]

B. Pitskel, Poisson law for Markov chains, Ergod. Th. & Dynam. Sys., 11 (1991), 501-513.  doi: 10.1017/S0143385700006301.  Google Scholar

[26]

J. Rousseau, Recurrence rates for observations of flows, Ergod. Th. & Dynam. Sys., 32 (2012), 1727-1751.  doi: 10.1017/S014338571100037X.  Google Scholar

[27]

J. RousseauB. Saussol and P. Varandas, Exponential law for random subshifts of finite type, Stochastic Processes and their Applications, 124 (2014), 3260-3276.  doi: 10.1016/j.spa.2014.04.016.  Google Scholar

[28]

L.-S. Young, Statistical properties of dynamical systems with some hyperbolicity, Annals of Math., 147 (1998), 585-650.  doi: 10.2307/120960.  Google Scholar

[29]

L.-S. Young, Recurrence time and rate of mixing, Israel J. of Math., 110 (1999), 153-188.  doi: 10.1007/BF02808180.  Google Scholar

[30]

L. Zhang, Borel-Cantelli lemmas and extreme value theory for geometric Lorenz models, Nonlinearity, 29 (2016), 232-255.  doi: 10.1088/0951-7715/29/1/232.  Google Scholar

show all references

References:
[1]

V. S. AfraimovicV. V. Bykov and L. P. Silnikov, The origin and structure of the Lorenz attractor, Dokl. Akad. Nauk., 234 (1977), 336-339.  doi: 10.2307/2152750.  Google Scholar

[2]

V. Araújo and M. J. Pacifico, Three-Dimensional Flows, volume 53 of Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics]. Springer, Heidelberg, 2010.  Google Scholar

[3]

V. AraújoM. J. PacificoE. R. Pujals and M. Viana, Singular-hyperbolic attractors are chaotic, Trans. Amer. Math. Soc., 361 (2009), 2431-2485.  doi: 10.1090/S0002-9947-08-04595-9.  Google Scholar

[4]

J. R. Chazottes and P. Collet, Poisson approximation for the number of visits to balls in nonuniformly hyperbolic dynamical systems, Ergod. Th. & Dynam. Sys., 33 (2013), 49-80.  doi: 10.1017/S0143385711000897.  Google Scholar

[5]

P. Collet, Statistics of closest return for some non-uniformly hyperbolic systems, Ergod. Th. & Dynam. Sys., 21 (2001), 401-420.  doi: 10.1017/S0143385701001201.  Google Scholar

[6]

A. C. M. Freitas and J. M. Freitas, On the link between dependence and independence in extreme value theory for dynamical systems, Stat. Probab. Lett., 78 (2008), 1088-1093.  doi: 10.1016/j.spl.2007.11.002.  Google Scholar

[7]

A. C. M. FreitasJ. M. Freitas and M. Todd, Hitting time statistics and extreme value theory, Probab. Theory Related Fields, 147 (2010), 675-710.  doi: 10.1007/s00440-009-0221-y.  Google Scholar

[8]

A. C. M. FreitasJ. M. Freitas and M. Todd, Extreme value laws in dynamical systems for non-smooth observations, J. Stat. Phys., 142 (2011), 108-126.  doi: 10.1007/s10955-010-0096-4.  Google Scholar

[9]

J. M. FreitasN. Haydn and M. Nicol, Convergence of rare event point processes to the Poisson process for planar billiards, Nonlinearity, 27 (2014), 1669-1687.  doi: 10.1088/0951-7715/27/7/1669.  Google Scholar

[10]

S. Galatolo, I. Nisoli and M. J. Pacifico, Decay of correlations and logarithm laws for Rovella attractors, preprint, arXiv: 1701.08743. Google Scholar

[11]

S. Galatolo and M. J. Pacifico, Lorenz like flows: Exponential decay of correlations for the poincaré map, logarithm law, quantitative recurrence, Ergodic Theory and Dynamical Systems, 30 (2010), 1703-1737.  doi: 10.1017/S0143385709000856.  Google Scholar

[12]

J. Guckenheimer and R. F. Williams, Structural stability of Lorenz attractors, Inst. Hautes Études Sci., 50 (1979), 59-72.   Google Scholar

[13]

C. GuptaM. Holland and M. Nicol, Extreme value theory and return time statistics for dispersing billard maps and flows, Lozi maps and Lorenz-like maps, Ergod. Th. & Dynam. Sys., 31 (2011), 1363-1390.  doi: 10.1017/S014338571000057X.  Google Scholar

[14]

N. Haydn and K. Wassilewska, Limiting distribution and error terms for the number of visits to balls in non-uniformly hyperbolic dynamical systems, Discrete Contin. Dyn. Sys., 36 (2016), 2585-2611.  doi: 10.3934/dcds.2016.36.2585.  Google Scholar

[15]

M. Hirata, Poisson law for Axiom A diffeomorphisms, Ergod. Th. & Dynam. Sys., 13 (1993), 533-556.  doi: 10.1017/S0143385700007513.  Google Scholar

[16]

M. HirataB. Saussol and S. Vaienti, Statistics of return times: A general framework and new applications, Comm. Math. Phys., 206 (1999), 33-55.  doi: 10.1007/s002200050697.  Google Scholar

[17]

M. HollandM. Nicol and A. Török, Extreme value theory for non-uniformly expanding dynamical systems, Trans. Amer. Math. Soc., 364 (2012), 661-688.  doi: 10.1090/S0002-9947-2011-05271-2.  Google Scholar

[18]

M. R. Leadbetter, G. Lindgren and H. Rootzén, Extremes and Related Properties of Random Sequences and Processes, Springer Series in Statistics, Springer-Verlag, New York, 1983.  Google Scholar

[19]

E. N. Lorenz, Deterministic nonperiodic flow, The Theory of Chaotic Attractors, (2004), 25-36.  doi: 10.1007/978-0-387-21830-4_2.  Google Scholar

[20]

V. Lucarini, D. Faranda, A. C. M. Freitas, J. M. Freitas, M. Holland, T. Kuna, M. Nicol and S. Vaienti, Extremes and Recurrence in Dynamical Systems, Pure and Applied Mathematics: A Wiley Series of Texts, Monographs and Tracts, Wiley, Hoboken, NJ, 2016. doi: 10.1002/9781118632321.  Google Scholar

[21]

P. Mattila, J. Marklof, Entry and return times for semi-flows, Nonlinearity, 30 (2017), 810-824, arXiv: 1605.02715. doi: 10.1088/1361-6544/aa518b.  Google Scholar

[22]

P. Mattila, Geometry of Sets and Measures in Euclidean Spaces, 1$^{st}$ ed. Cambridge: Cambridge University Press, 1995. doi: 10.1017/CBO9780511623813.  Google Scholar

[23]

C. A. MoralesM. J. Pacifico and E. R. Pujals, Singular hyperbolic systems, Proc. Am. Math. Soc., 127 (1999), 3393-3401.  doi: 10.1090/S0002-9939-99-04936-9.  Google Scholar

[24]

F. Péne and B. Saussol, Poisson law for some non-uniformly hyperbolic dynamical systems with polynomial rate of mixing, Ergod. Th. & Dynam. Sys., 36 (2016), 2602-2626.  doi: 10.1017/etds.2015.28.  Google Scholar

[25]

B. Pitskel, Poisson law for Markov chains, Ergod. Th. & Dynam. Sys., 11 (1991), 501-513.  doi: 10.1017/S0143385700006301.  Google Scholar

[26]

J. Rousseau, Recurrence rates for observations of flows, Ergod. Th. & Dynam. Sys., 32 (2012), 1727-1751.  doi: 10.1017/S014338571100037X.  Google Scholar

[27]

J. RousseauB. Saussol and P. Varandas, Exponential law for random subshifts of finite type, Stochastic Processes and their Applications, 124 (2014), 3260-3276.  doi: 10.1016/j.spa.2014.04.016.  Google Scholar

[28]

L.-S. Young, Statistical properties of dynamical systems with some hyperbolicity, Annals of Math., 147 (1998), 585-650.  doi: 10.2307/120960.  Google Scholar

[29]

L.-S. Young, Recurrence time and rate of mixing, Israel J. of Math., 110 (1999), 153-188.  doi: 10.1007/BF02808180.  Google Scholar

[30]

L. Zhang, Borel-Cantelli lemmas and extreme value theory for geometric Lorenz models, Nonlinearity, 29 (2016), 232-255.  doi: 10.1088/0951-7715/29/1/232.  Google Scholar

[1]

Karl-Peter Hadeler, Frithjof Lutscher. Quiescent phases with distributed exit times. Discrete & Continuous Dynamical Systems - B, 2012, 17 (3) : 849-869. doi: 10.3934/dcdsb.2012.17.849

[2]

Jamal Mrazgua, El Houssaine Tissir, Mohamed Ouahi. Frequency domain $ H_{\infty} $ control design for active suspension systems. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021036

[3]

Mehmet Duran Toksari, Emel Kizilkaya Aydogan, Berrin Atalay, Saziye Sari. Some scheduling problems with sum of logarithm processing times based learning effect and exponential past sequence dependent delivery times. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021044

[4]

Samira Shahsavari, Saeed Ketabchi. The proximal methods for solving absolute value equation. Numerical Algebra, Control & Optimization, 2021, 11 (3) : 449-460. doi: 10.3934/naco.2020037

[5]

Shu-Yu Hsu. Existence and properties of ancient solutions of the Yamabe flow. Discrete & Continuous Dynamical Systems, 2018, 38 (1) : 91-129. doi: 10.3934/dcds.2018005

[6]

Matthias Erbar, Jan Maas. Gradient flow structures for discrete porous medium equations. Discrete & Continuous Dynamical Systems, 2014, 34 (4) : 1355-1374. doi: 10.3934/dcds.2014.34.1355

[7]

Zhengchao Ji. Cylindrical estimates for mean curvature flow in hyperbolic spaces. Communications on Pure & Applied Analysis, 2021, 20 (3) : 1199-1211. doi: 10.3934/cpaa.2021016

[8]

Andrey Kovtanyuk, Alexander Chebotarev, Nikolai Botkin, Varvara Turova, Irina Sidorenko, Renée Lampe. Modeling the pressure distribution in a spatially averaged cerebral capillary network. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021016

[9]

Ricardo A. Podestá, Denis E. Videla. The weight distribution of irreducible cyclic codes associated with decomposable generalized Paley graphs. Advances in Mathematics of Communications, 2021  doi: 10.3934/amc.2021002

[10]

Omer Gursoy, Kamal Adli Mehr, Nail Akar. Steady-state and first passage time distributions for waiting times in the $ MAP/M/s+G $ queueing model with generally distributed patience times. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021078

[11]

Ling-Bing He, Li Xu. On the compressible Navier-Stokes equations in the whole space: From non-isentropic flow to isentropic flow. Discrete & Continuous Dynamical Systems, 2021, 41 (7) : 3489-3530. doi: 10.3934/dcds.2021005

[12]

M. Mahalingam, Parag Ravindran, U. Saravanan, K. R. Rajagopal. Two boundary value problems involving an inhomogeneous viscoelastic solid. Discrete & Continuous Dynamical Systems - S, 2017, 10 (6) : 1351-1373. doi: 10.3934/dcdss.2017072

[13]

Fritz Gesztesy, Helge Holden, Johanna Michor, Gerald Teschl. The algebro-geometric initial value problem for the Ablowitz-Ladik hierarchy. Discrete & Continuous Dynamical Systems, 2010, 26 (1) : 151-196. doi: 10.3934/dcds.2010.26.151

[14]

Oleksandr Boichuk, Victor Feruk. Boundary-value problems for weakly singular integral equations. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021094

[15]

Hui Yang, Yuzhu Han. Initial boundary value problem for a strongly damped wave equation with a general nonlinearity. Evolution Equations & Control Theory, 2021  doi: 10.3934/eect.2021019

[16]

Feng Luo. A combinatorial curvature flow for compact 3-manifolds with boundary. Electronic Research Announcements, 2005, 11: 12-20.

[17]

Pablo D. Carrasco, Túlio Vales. A symmetric Random Walk defined by the time-one map of a geodesic flow. Discrete & Continuous Dynamical Systems, 2021, 41 (6) : 2891-2905. doi: 10.3934/dcds.2020390

[18]

Ritu Agarwal, Kritika, Sunil Dutt Purohit, Devendra Kumar. Mathematical modelling of cytosolic calcium concentration distribution using non-local fractional operator. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021017

[19]

Quan Hai, Shutang Liu. Mean-square delay-distribution-dependent exponential synchronization of chaotic neural networks with mixed random time-varying delays and restricted disturbances. Discrete & Continuous Dynamical Systems - B, 2021, 26 (6) : 3097-3118. doi: 10.3934/dcdsb.2020221

[20]

Reza Lotfi, Yahia Zare Mehrjerdi, Mir Saman Pishvaee, Ahmad Sadeghieh, Gerhard-Wilhelm Weber. A robust optimization model for sustainable and resilient closed-loop supply chain network design considering conditional value at risk. Numerical Algebra, Control & Optimization, 2021, 11 (2) : 221-253. doi: 10.3934/naco.2020023

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (71)
  • HTML views (65)
  • Cited by (0)

Other articles
by authors

[Back to Top]