Visco-Energetic solutions of rate-independent systems (recently introduced in [
In the present paper we study Visco-Energetic solutions in the scalar-valued case and we obtain a full characterization for a broad class of energy functionals. In particular, we prove that they exhibit a sort of intermediate behaviour between Energetic and Balanced Viscosity solutions, which can be finely tuned according to the choice of the viscous correction $δ$.
Citation: |
Figure 3. Visco-Energetic solutions for a double-well energy $W$ with an increasing load $\ell$. When $\mu>-\min W''$ (left picture) the solution jumps when it reach the maximum of $W'$ and the transition is the ''double chain'' obtained by solving the Incremental Minimization Scheme with frozen time $t$. When $\mu$ is small (right picture) the optimal transition $\vartheta$ makes a first jump connecting $\mathit{u}_{\tiny \mathsf L}(t)$ with $u_+$ according to the modified Maxwell rule (9): $\mathit{u}_{\tiny \mathsf L}(t)$ and $u_+$ corresponds to the intersection of $W'$ with the red line, whose slope is $-\mu$.
L. Ambrosio, N. Fusco and D. Pallara,
Functions of Bounded Variation and Free Discontinuity Problems, Clarendon Press, Oxford, 2000.
![]() ![]() |
|
G. Dal Maso
and R. Toader
, A model for the quasi-static growth of brittle fractures based on local minimization, Math. Models Methods Appl. Sci., 12 (2002)
, 1773-1799.
doi: 10.1142/S0218202502002331.![]() ![]() ![]() |
|
M. Efendiev
and A. Mielke
, On the rate-independent limit of systems with dry friction and small viscosity, J. Convex Analysis, 13 (2006)
, 151-167.
![]() ![]() |
|
I. S. Gál
, On the fundamental theorems of the calculus, Trans. Amer. Math. Soc., 86 (1957)
, 309-320.
doi: 10.1090/S0002-9947-1957-0093562-7.![]() ![]() ![]() |
|
D. Knees
and A. Schröder
, Computation aspect of quasi-static crack propagation, DCDS-S, 6 (2013)
, 63-99.
doi: 10.3934/dcdss.2013.6.63.![]() ![]() ![]() |
|
K. Kuratowski
, Sur l'espace des fonctions partielles, Ann. Mat. Pura Appl., 40 (1955)
, 61-67.
doi: 10.1007/BF02416522.![]() ![]() ![]() |
|
D. Leguillon
, Strength or toughness? A criterion for crack onset at a notch, European J. of Mechanics A/Solids, 21 (2002)
, 61-72.
doi: 10.1016/S0997-7538(01)01184-6.![]() ![]() |
|
A. Mainik
and A. Mielke
, Existence results for energetic models for rate-independent systems, Calc. Var. Partial Differential Equations, 22 (2005)
, 73-99.
doi: 10.1007/s00526-004-0267-8.![]() ![]() ![]() |
|
A. Mielke
, Differential, energetic and metric formulations for rate-independent processes, Nonlinear PDEs and Applications, Lect. Notes Math, Springer, 2028 (2011)
, 87-170.
doi: 10.1007/978-3-642-21861-3_3.![]() ![]() ![]() |
|
A. Mielke
, R. Rossi
and G. Savaré
, Modeling solutions with jumps for rate-independent systems on metric spaces, Discrete and Continuous Dynamical Systems A, 25 (2009)
, 585-615.
doi: 10.3934/dcds.2009.25.585.![]() ![]() ![]() |
|
Alexander Mielke
, Riccarda Rossi
and Giuseppe Savaré
, BV solutions and viscosity approximations of rate-independent systems, ESAIM Control Optim. Calc. Var., 18 (2012)
, 36-80.
doi: 10.1051/cocv/2010054.![]() ![]() ![]() |
|
Alexander Mielke
, Riccarda Rossi
and Giuseppe Savaré
, Balanced viscosity (BV) solutions to infinite-dimensional rate-independent systems, J. Eur. Math. Soc., 18 (2016)
, 2107-2165.
doi: 10.4171/JEMS/639.![]() ![]() ![]() |
|
A. Mielke and T. Roubíček,
Rate-Independent Systems: Theory and Application, Springer, New York, 2015.
doi: 10.1007/978-1-4939-2706-7.![]() ![]() ![]() |
|
A. Mielke
and F. Theil
, On rate-independent hysteresis models, NoDEA Nonlinear Differential Equations Appl., 11 (2004)
, 151-189.
doi: 10.1007/s00030-003-1052-7.![]() ![]() ![]() |
|
A. Mielke
, F. Theil
and V. I. Levitas
, A variational formulation of rate-independent phase transformations using an extremum principle, Arch. Ration. Mech. Anal., 162 (2002)
, 137-177.
doi: 10.1007/s002050200194.![]() ![]() ![]() |
|
L. Minotti,
Visco-Energetic Solutions to Rate-Independent Evolution Problems, PhD thesis, Pavia, 2016.
![]() |
|
L. Minotti and G. Savaré, Viscous corrections of the time incremental minimization scheme and visco-energetic solutions to rate-independent evolution problems, arXiv: 1606.03359, (2016), 1-60.
![]() |
|
M. Negri
and C. Ortner
, Quasi-static crack propagation by Griffith's criterion, Math. Models Methods Appl. Sci., 18 (2008)
, 1895-1925.
doi: 10.1142/S0218202508003236.![]() ![]() ![]() |
|
R. Rossi
, A. Mielke
and G. Savaré
, A metric approach to a class of doubly nonlinear evolution equations and applications, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5), 7 (2008)
, 97-169.
![]() ![]() |
|
R. Rossi
and G. Savaré
, A characterization of energetic and BV solutions to one-dimensional rate-independent systems, Discrete Contin. Dyn. Syst. Ser. S, 6 (2013)
, 167-191.
![]() ![]() |
|
T. Roubíček
, C. C. Panagiotopoulos
and V. Mantic
, Quasistatic adhesive contact of visco-elastic bodies and its numerical treatment for very small viscosity, Zeitschrift angew. Math. Mech., 93 (2013)
, 823-840.
doi: 10.1002/zamm.201200239.![]() ![]() ![]() |
The double-well potential
BV solution for a double-well energy
Visco-Energetic solutions for a double-well energy
The one-sided slopes and the stability region when
Visco-Energetic solution of a double-well potential energy with an oscillating external loading and a quadratic viscous-correction
Visco-Energetic solutions of a nonconvex energy and an increasing loading. The optimal transition is a combination of sliding and viscous parts.