November  2017, 37(11): 5883-5912. doi: 10.3934/dcds.2017256

Visco-Energetic solutions to one-dimensional rate-independent problems

Dipartimento di Matematica "F. Casorati", Università di Pavia, Via Ferrata 1, I-27100 Pavia, Italy

Received  October 2016 Revised  June 2017 Published  July 2017

Visco-Energetic solutions of rate-independent systems (recently introduced in [17]) are obtained by solving a modified time Incremental Minimization Scheme, where at each step the dissipation is reinforced by a viscous correction $δ$, typically a quadratic perturbation of the dissipation distance. Like Energetic and Balanced Viscosity solutions, they provide a variational characterization of rate-independent evolutions, with an accurate description of their jump behaviour.

In the present paper we study Visco-Energetic solutions in the scalar-valued case and we obtain a full characterization for a broad class of energy functionals. In particular, we prove that they exhibit a sort of intermediate behaviour between Energetic and Balanced Viscosity solutions, which can be finely tuned according to the choice of the viscous correction $δ$.

Citation: Luca Minotti. Visco-Energetic solutions to one-dimensional rate-independent problems. Discrete & Continuous Dynamical Systems - A, 2017, 37 (11) : 5883-5912. doi: 10.3934/dcds.2017256
References:
[1]

L. Ambrosio, N. Fusco and D. Pallara, Functions of Bounded Variation and Free Discontinuity Problems, Clarendon Press, Oxford, 2000.  Google Scholar

[2]

G. Dal Maso and R. Toader, A model for the quasi-static growth of brittle fractures based on local minimization, Math. Models Methods Appl. Sci., 12 (2002), 1773-1799.  doi: 10.1142/S0218202502002331.  Google Scholar

[3]

M. Efendiev and A. Mielke, On the rate-independent limit of systems with dry friction and small viscosity, J. Convex Analysis, 13 (2006), 151-167.   Google Scholar

[4]

I. S. Gál, On the fundamental theorems of the calculus, Trans. Amer. Math. Soc., 86 (1957), 309-320.  doi: 10.1090/S0002-9947-1957-0093562-7.  Google Scholar

[5]

D. Knees and A. Schröder, Computation aspect of quasi-static crack propagation, DCDS-S, 6 (2013), 63-99.  doi: 10.3934/dcdss.2013.6.63.  Google Scholar

[6]

K. Kuratowski, Sur l'espace des fonctions partielles, Ann. Mat. Pura Appl.(4), 40 (1955), 61-67.  doi: 10.1007/BF02416522.  Google Scholar

[7]

D. Leguillon, Strength or toughness? A criterion for crack onset at a notch, European J. of Mechanics A/Solids, 21 (2002), 61-72.  doi: 10.1016/S0997-7538(01)01184-6.  Google Scholar

[8]

A. Mainik and A. Mielke, Existence results for energetic models for rate-independent systems, Calc. Var. Partial Differential Equations, 22 (2005), 73-99.  doi: 10.1007/s00526-004-0267-8.  Google Scholar

[9]

A. Mielke, Differential, energetic and metric formulations for rate-independent processes, Nonlinear PDEs and Applications, Lect. Notes Math, Springer, 2028 (2011), 87-170.  doi: 10.1007/978-3-642-21861-3_3.  Google Scholar

[10]

A. MielkeR. Rossi and G. Savaré, Modeling solutions with jumps for rate-independent systems on metric spaces, Discrete and Continuous Dynamical Systems A, 25 (2009), 585-615.  doi: 10.3934/dcds.2009.25.585.  Google Scholar

[11]

Alexander MielkeRiccarda Rossi and Giuseppe Savaré, BV solutions and viscosity approximations of rate-independent systems, ESAIM Control Optim. Calc. Var., 18 (2012), 36-80.  doi: 10.1051/cocv/2010054.  Google Scholar

[12]

Alexander MielkeRiccarda Rossi and Giuseppe Savaré, Balanced viscosity (BV) solutions to infinite-dimensional rate-independent systems, J. Eur. Math. Soc., 18 (2016), 2107-2165.  doi: 10.4171/JEMS/639.  Google Scholar

[13]

A. Mielke and T. Roubíček, Rate-Independent Systems: Theory and Application, Springer, New York, 2015. doi: 10.1007/978-1-4939-2706-7.  Google Scholar

[14]

A. Mielke and F. Theil, On rate-independent hysteresis models, NoDEA Nonlinear Differential Equations Appl., 11 (2004), 151-189.  doi: 10.1007/s00030-003-1052-7.  Google Scholar

[15]

A. MielkeF. Theil and V. I. Levitas, A variational formulation of rate-independent phase transformations using an extremum principle, Arch. Ration. Mech. Anal., 162 (2002), 137-177.  doi: 10.1007/s002050200194.  Google Scholar

[16]

L. Minotti, Visco-Energetic Solutions to Rate-Independent Evolution Problems, PhD thesis, Pavia, 2016. Google Scholar

[17]

L. Minotti and G. Savaré, Viscous corrections of the time incremental minimization scheme and visco-energetic solutions to rate-independent evolution problems, arXiv: 1606.03359, (2016), 1-60. Google Scholar

[18]

M. Negri and C. Ortner, Quasi-static crack propagation by Griffith's criterion, Math. Models Methods Appl. Sci., 18 (2008), 1895-1925.  doi: 10.1142/S0218202508003236.  Google Scholar

[19]

R. RossiA. Mielke and G. Savaré, A metric approach to a class of doubly nonlinear evolution equations and applications, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5), 7 (2008), 97-169.   Google Scholar

[20]

R. Rossi and G. Savaré, A characterization of energetic and BV solutions to one-dimensional rate-independent systems, Discrete Contin. Dyn. Syst. Ser. S, 6 (2013), 167-191.   Google Scholar

[21]

T. RoubíčekC. C. Panagiotopoulos and V. Mantic, Quasistatic adhesive contact of visco-elastic bodies and its numerical treatment for very small viscosity, Zeitschrift angew. Math. Mech., 93 (2013), 823-840.  doi: 10.1002/zamm.201200239.  Google Scholar

show all references

References:
[1]

L. Ambrosio, N. Fusco and D. Pallara, Functions of Bounded Variation and Free Discontinuity Problems, Clarendon Press, Oxford, 2000.  Google Scholar

[2]

G. Dal Maso and R. Toader, A model for the quasi-static growth of brittle fractures based on local minimization, Math. Models Methods Appl. Sci., 12 (2002), 1773-1799.  doi: 10.1142/S0218202502002331.  Google Scholar

[3]

M. Efendiev and A. Mielke, On the rate-independent limit of systems with dry friction and small viscosity, J. Convex Analysis, 13 (2006), 151-167.   Google Scholar

[4]

I. S. Gál, On the fundamental theorems of the calculus, Trans. Amer. Math. Soc., 86 (1957), 309-320.  doi: 10.1090/S0002-9947-1957-0093562-7.  Google Scholar

[5]

D. Knees and A. Schröder, Computation aspect of quasi-static crack propagation, DCDS-S, 6 (2013), 63-99.  doi: 10.3934/dcdss.2013.6.63.  Google Scholar

[6]

K. Kuratowski, Sur l'espace des fonctions partielles, Ann. Mat. Pura Appl.(4), 40 (1955), 61-67.  doi: 10.1007/BF02416522.  Google Scholar

[7]

D. Leguillon, Strength or toughness? A criterion for crack onset at a notch, European J. of Mechanics A/Solids, 21 (2002), 61-72.  doi: 10.1016/S0997-7538(01)01184-6.  Google Scholar

[8]

A. Mainik and A. Mielke, Existence results for energetic models for rate-independent systems, Calc. Var. Partial Differential Equations, 22 (2005), 73-99.  doi: 10.1007/s00526-004-0267-8.  Google Scholar

[9]

A. Mielke, Differential, energetic and metric formulations for rate-independent processes, Nonlinear PDEs and Applications, Lect. Notes Math, Springer, 2028 (2011), 87-170.  doi: 10.1007/978-3-642-21861-3_3.  Google Scholar

[10]

A. MielkeR. Rossi and G. Savaré, Modeling solutions with jumps for rate-independent systems on metric spaces, Discrete and Continuous Dynamical Systems A, 25 (2009), 585-615.  doi: 10.3934/dcds.2009.25.585.  Google Scholar

[11]

Alexander MielkeRiccarda Rossi and Giuseppe Savaré, BV solutions and viscosity approximations of rate-independent systems, ESAIM Control Optim. Calc. Var., 18 (2012), 36-80.  doi: 10.1051/cocv/2010054.  Google Scholar

[12]

Alexander MielkeRiccarda Rossi and Giuseppe Savaré, Balanced viscosity (BV) solutions to infinite-dimensional rate-independent systems, J. Eur. Math. Soc., 18 (2016), 2107-2165.  doi: 10.4171/JEMS/639.  Google Scholar

[13]

A. Mielke and T. Roubíček, Rate-Independent Systems: Theory and Application, Springer, New York, 2015. doi: 10.1007/978-1-4939-2706-7.  Google Scholar

[14]

A. Mielke and F. Theil, On rate-independent hysteresis models, NoDEA Nonlinear Differential Equations Appl., 11 (2004), 151-189.  doi: 10.1007/s00030-003-1052-7.  Google Scholar

[15]

A. MielkeF. Theil and V. I. Levitas, A variational formulation of rate-independent phase transformations using an extremum principle, Arch. Ration. Mech. Anal., 162 (2002), 137-177.  doi: 10.1007/s002050200194.  Google Scholar

[16]

L. Minotti, Visco-Energetic Solutions to Rate-Independent Evolution Problems, PhD thesis, Pavia, 2016. Google Scholar

[17]

L. Minotti and G. Savaré, Viscous corrections of the time incremental minimization scheme and visco-energetic solutions to rate-independent evolution problems, arXiv: 1606.03359, (2016), 1-60. Google Scholar

[18]

M. Negri and C. Ortner, Quasi-static crack propagation by Griffith's criterion, Math. Models Methods Appl. Sci., 18 (2008), 1895-1925.  doi: 10.1142/S0218202508003236.  Google Scholar

[19]

R. RossiA. Mielke and G. Savaré, A metric approach to a class of doubly nonlinear evolution equations and applications, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5), 7 (2008), 97-169.   Google Scholar

[20]

R. Rossi and G. Savaré, A characterization of energetic and BV solutions to one-dimensional rate-independent systems, Discrete Contin. Dyn. Syst. Ser. S, 6 (2013), 167-191.   Google Scholar

[21]

T. RoubíčekC. C. Panagiotopoulos and V. Mantic, Quasistatic adhesive contact of visco-elastic bodies and its numerical treatment for very small viscosity, Zeitschrift angew. Math. Mech., 93 (2013), 823-840.  doi: 10.1002/zamm.201200239.  Google Scholar

Figure 1.  The double-well potential $W$ with its convex envelope in bold (left picture) and an energetic solution $u$ in the case of a strictly increasing load $\ell$ (right picture).
Figure 2.  BV solution for a double-well energy $W$ with an increasing load $\ell$. The blue line denotes the path described by the optimal transition $\vartheta$ solving (4).
Figure 3.  Visco-Energetic solutions for a double-well energy $W$ with an increasing load $\ell$. When $\mu>-\min W''$ (left picture) the solution jumps when it reach the maximum of $W'$ and the transition is the ''double chain'' obtained by solving the Incremental Minimization Scheme with frozen time $t$. When $\mu$ is small (right picture) the optimal transition $\vartheta$ makes a first jump connecting $\mathit{u}_{\tiny \mathsf L}(t)$ with $u_+$ according to the modified Maxwell rule (9): $\mathit{u}_{\tiny \mathsf L}(t)$ and $u_+$ corresponds to the intersection of $W'$ with the red line, whose slope is $-\mu$.
Figure 4.  The one-sided slopes and the stability region when $W$ is a double-well potential. For some suitable choices of $\delta$, $\mathit W_{\mathsf{i}\mathsf{r},{\delta}}'$ is intermediate between $W'_{\mathsf i\mathsf r}$ and $W'$.
Figure 5.  $\mathsf D$-Maxwell's rule for a double well potential: when $\delta=\frac{\mu}{2}|\cdot|^2$, the ''last point'' where $W'$ and $\mathit W_{\mathsf{i}\mathsf{r},{\delta}}'$ coincide is such that the total area between the graph $W'$ and the line whose slope is $-\mu$ is zero.
Figure 6.  Visco-Energetic solution of a double-well potential energy with an oscillating external loading and a quadratic viscous-correction $\delta(u,v)$, turned by a parameter $\mu>-\min W''$.
Figure 7.  Visco-Energetic solutions of a nonconvex energy and an increasing loading. The optimal transition is a combination of sliding and viscous parts.
[1]

Haibo Cui, Haiyan Yin. Convergence rate of solutions toward stationary solutions to the isentropic micropolar fluid model in a half line. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020210

[2]

Irena PawŃow, Wojciech M. Zajączkowski. Global regular solutions to three-dimensional thermo-visco-elasticity with nonlinear temperature-dependent specific heat. Communications on Pure & Applied Analysis, 2017, 16 (4) : 1331-1372. doi: 10.3934/cpaa.2017065

[3]

Haiyan Wang. Existence and nonexistence of positive radial solutions for quasilinear systems. Conference Publications, 2009, 2009 (Special) : 810-817. doi: 10.3934/proc.2009.2009.810

[4]

Jaume Llibre, Luci Any Roberto. On the periodic solutions of a class of Duffing differential equations. Discrete & Continuous Dynamical Systems - A, 2013, 33 (1) : 277-282. doi: 10.3934/dcds.2013.33.277

[5]

Wei-Jian Bo, Guo Lin, Shigui Ruan. Traveling wave solutions for time periodic reaction-diffusion systems. Discrete & Continuous Dynamical Systems - A, 2018, 38 (9) : 4329-4351. doi: 10.3934/dcds.2018189

[6]

Yimin Zhang, Youjun Wang, Yaotian Shen. Solutions for quasilinear Schrödinger equations with critical Sobolev-Hardy exponents. Communications on Pure & Applied Analysis, 2011, 10 (4) : 1037-1054. doi: 10.3934/cpaa.2011.10.1037

[7]

Lucas C. F. Ferreira, Jhean E. Pérez-López, Élder J. Villamizar-Roa. On the product in Besov-Lorentz-Morrey spaces and existence of solutions for the stationary Boussinesq equations. Communications on Pure & Applied Analysis, 2018, 17 (6) : 2423-2439. doi: 10.3934/cpaa.2018115

[8]

Xiaoming Wang. Quasi-periodic solutions for a class of second order differential equations with a nonlinear damping term. Discrete & Continuous Dynamical Systems - S, 2017, 10 (3) : 543-556. doi: 10.3934/dcdss.2017027

[9]

Giovanni Cimatti. Forced periodic solutions for piezoelectric crystals. Communications on Pure & Applied Analysis, 2005, 4 (2) : 475-485. doi: 10.3934/cpaa.2005.4.475

[10]

Ian Schindler, Kyril Tintarev. Mountain pass solutions to semilinear problems with critical nonlinearity. Conference Publications, 2007, 2007 (Special) : 912-919. doi: 10.3934/proc.2007.2007.912

[11]

Shu-Yu Hsu. Existence and properties of ancient solutions of the Yamabe flow. Discrete & Continuous Dynamical Systems - A, 2018, 38 (1) : 91-129. doi: 10.3934/dcds.2018005

[12]

Jian Yang, Bendong Lou. Traveling wave solutions of competitive models with free boundaries. Discrete & Continuous Dynamical Systems - B, 2014, 19 (3) : 817-826. doi: 10.3934/dcdsb.2014.19.817

[13]

Hildeberto E. Cabral, Zhihong Xia. Subharmonic solutions in the restricted three-body problem. Discrete & Continuous Dynamical Systems - A, 1995, 1 (4) : 463-474. doi: 10.3934/dcds.1995.1.463

[14]

Palash Sarkar, Subhadip Singha. Verifying solutions to LWE with implications for concrete security. Advances in Mathematics of Communications, 2021, 15 (2) : 257-266. doi: 10.3934/amc.2020057

[15]

Yanqin Fang, Jihui Zhang. Multiplicity of solutions for the nonlinear Schrödinger-Maxwell system. Communications on Pure & Applied Analysis, 2011, 10 (4) : 1267-1279. doi: 10.3934/cpaa.2011.10.1267

[16]

Wentao Huang, Jianlin Xiang. Soliton solutions for a quasilinear Schrödinger equation with critical exponent. Communications on Pure & Applied Analysis, 2016, 15 (4) : 1309-1333. doi: 10.3934/cpaa.2016.15.1309

[17]

Elvise Berchio, Filippo Gazzola, Dario Pierotti. Nodal solutions to critical growth elliptic problems under Steklov boundary conditions. Communications on Pure & Applied Analysis, 2009, 8 (2) : 533-557. doi: 10.3934/cpaa.2009.8.533

[18]

Luke Finlay, Vladimir Gaitsgory, Ivan Lebedev. Linear programming solutions of periodic optimization problems: approximation of the optimal control. Journal of Industrial & Management Optimization, 2007, 3 (2) : 399-413. doi: 10.3934/jimo.2007.3.399

[19]

Kin Ming Hui, Soojung Kim. Asymptotic large time behavior of singular solutions of the fast diffusion equation. Discrete & Continuous Dynamical Systems - A, 2017, 37 (11) : 5943-5977. doi: 10.3934/dcds.2017258

[20]

A. Aghajani, S. F. Mottaghi. Regularity of extremal solutions of semilinaer fourth-order elliptic problems with general nonlinearities. Communications on Pure & Applied Analysis, 2018, 17 (3) : 887-898. doi: 10.3934/cpaa.2018044

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (51)
  • HTML views (75)
  • Cited by (1)

Other articles
by authors

[Back to Top]