November  2017, 37(11): 5943-5977. doi: 10.3934/dcds.2017258

Asymptotic large time behavior of singular solutions of the fast diffusion equation

1. 

Institute of Mathematics, Academia Sinica, Taipei, Taiwan

2. 

Department of Mathematics, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China

* Corresponding author: Soojung Kim

Received  December 2016 Revised  June 2017 Published  July 2017

We study the asymptotic large time behavior of singular solutions of the fast diffusion equation
$u_t=Δ u^m$
in
$({\mathbb R}^n\setminus\{0\})×(0, ∞)$
in the subcritical case
$0<m<\frac{n-2}{n}$
,
$n≥3$
. Firstly, we prove the existence of the singular solution
$u$
of the above equation that is trapped in between self-similar solutions of the form of
$t^{-α} f_i(t^{-β}x)$
,
$i=1, 2$
, with the initial value
$u_0$
satisfying
$A_1|x|^{-γ}≤ u_0≤ A_2|x|^{-γ}$
for some constants
$A_2>A_1>0$
and
$\frac{2}{1-m}<γ<\frac{n-2}{m}$
, where
$β:=\frac{1}{2-γ(1-m)}$, $α:=\frac{2\beta-1}{1-m}, $
and the self-similar profile
$f_i$
satisfies the elliptic equation
$Δ f^m+α f+β x· \nabla f=0 \,\,\,\,\,\,\mbox{ in ${\mathbb R}^n\setminus\{0\}$}$
with $\lim_{|x|\to0}|x|^{\frac{ α}{ β}}f_i(x)=A_i$ and $\lim_{|x|\to∞}|x|^{\frac{n-2}{m}}{f_i}(x)= D_{A_i} $ for some constants $D_{A_i}>0$. When $\frac{2}{1-m} < γ < n$, under an integrability condition on the initial value $u_0$ of the singular solution $u$, we prove that the rescaled function
$\tilde u(y, τ):= t^{\, α} u(t^{\, β} y, t),\,\,\,\,\,\, { τ:=\log t}, $
converges to some self-similar profile $f$ as $τ\to∞$.
Citation: Kin Ming Hui, Soojung Kim. Asymptotic large time behavior of singular solutions of the fast diffusion equation. Discrete & Continuous Dynamical Systems, 2017, 37 (11) : 5943-5977. doi: 10.3934/dcds.2017258
References:
[1]

D. G. Aronson, The porous medium equation, Nonlinear diffusion problems, (Montecatini Terme, 1985), 1-46, Lecture Notes in Math., 1224, Springer, Berlin, 1986. doi: 10.1007/BFb0072687.  Google Scholar

[2]

A. BlanchetM. BonforteJ. DolbeaultG. Grillo and J. L. Vázquez, Asymptotics of the fast diffusion equation via entropy estimates, Arch. Ration. Mech. Anal., 191 (2009), 347-385.  doi: 10.1007/s00205-008-0155-z.  Google Scholar

[3]

M. BonforteJ. DolbeaultG. Grillo and J. L. Vázquez, Sharp rates of decay of solutions to the nonlinear fast diffusion equation via functional inequalities, Proc. Natl. Acad. Sci. USA, 107 (2010), 16459-16464.  doi: 10.1073/pnas.1003972107.  Google Scholar

[4]

E. Chasseigne and J. L. Vázquez, Theory of extended solutions for fast-diffusion equations in optimal classes of data. Radiation from singularities, Arch. Ration. Mech. Anal., 164 (2002), 133-187.  doi: 10.1007/s00205-002-0210-0.  Google Scholar

[5]

P. Daskalopoulos and C. E. Kenig, Degenerate Diffusion: Initial Value Problems and Local Regularity Theory, EMS Tracts in Mathematics, 1. European Mathematical Society (EMS), Zürich, 2007. doi: 10.4171/033.  Google Scholar

[6]

P. Daskalopoulos, J. King and N. Sesum, Extinction profile of complete non-compact solutions to the Yamabe flow, arXiv: 1306.0859. Google Scholar

[7]

P. Daskalopoulos, M. del Pino and N. Sesum, Type Ⅱ ancient compact solutions to the Yamabe flow, J. Reine Angew. Math., (2015), http://dx.doi.org/10.1515/crelle-2015-0048 in press. doi: 10.1515/crelle-2015-0048.  Google Scholar

[8]

P. Daskalopoulos and N. Sesum, On the extinction profile of solutions to fast diffusion, J. Reine Angew. Math., 622 (2008), 95-119.  doi: 10.1515/CRELLE.2008.066.  Google Scholar

[9]

P. Daskalopoulos and N. Sesum, The classification of locally conformally flat Yamabe solitons, Adv. Math., 240 (2013), 346-369.  doi: 10.1016/j.aim.2013.03.011.  Google Scholar

[10]

M. FilaJ. L. VázquezM. Winkler and E. Yanagida, Rate of convergence to Barenblatt profiles for the fast diffusion equation, Arch. Ration. Mech. Anal., 204 (2012), 599-625.  doi: 10.1007/s00205-011-0486-z.  Google Scholar

[11]

M. Fila and M. Winkler, Optimal rates of convergence to the singular Barenblatt profile for the fast diffusion equation, Proc. Roy. Soc. Edinburgh Sect. A, 146 (2016), 309-324.  doi: 10.1017/S0308210515000554.  Google Scholar

[12]

M. Fila and M. Winkler, Rate of convergence to separable solutions of the fast diffusion equation, Israel J. Math., 213 (2016), 1-32.  doi: 10.1007/s11856-016-1319-4.  Google Scholar

[13]

M. Fila and M. Winkler, Slow growth of solutions of superfast diffusion equations with unbounded initial data, J. London Math. Soc.(2), 95 (2017), 659-683.  doi: 10.1112/jlms.12029.  Google Scholar

[14]

M. A. Herrero and M. Pierre, The Cauchy problem for $u_t = \Delta u^m$ when $0 < m < 1$, Trans. Amer. Math. Soc., 291 (1985), 145-158.  doi: 10.1090/S0002-9947-1985-0797051-0.  Google Scholar

[15]

S.Y. Hsu, Asymptotic profile of solutions of a singular diffusion equation as $t \to∞$, Nonlinear Anal., 48 (2002), 781-790.  doi: 10.1016/S0362-546X(00)00214-5.  Google Scholar

[16]

S. Y. Hsu, Singular limit and exact decay rate of a nonlinear elliptic equation, Nonlinear Anal., 75 (2012), 3443-3455.  doi: 10.1016/j.na.2012.01.009.  Google Scholar

[17]

S. Y. Hsu, Existence and asymptotic behaviour of solutions of the very fast diffusion equation, Manuscripta Math., 140 (2013), 441-460.  doi: 10.1007/s00229-012-0576-8.  Google Scholar

[18]

K. M. Hui, On some Dirichlet and Cauchy problems for a singular diffusion equation, Differential Integral Equations, 15 (2002), 769-804.   Google Scholar

[19]

K. M. Hui, Singular limit of solutions of the very fast diffusion equation, Nonlinear Anal., 68 (2008), 1120-1147.  doi: 10.1016/j.na.2006.12.009.  Google Scholar

[20]

K. M. Hui, Asymptotic behaviour of solutions of the fast diffusion equation near its extinction time, J. Math. Anal. Appl., 454 (2017), 695-715.  doi: 10.1016/j.jmaa.2017.05.006.  Google Scholar

[21]

T. Kato, Perturbation Theory for Linear Operators, 2nd ed., Grundlehren Math. Wiss. 132, Springer-Verlag, Berlin, New York, 1976.  Google Scholar

[22]

O. A. Ladyzenskaya, V. A. Solonnikov and N. N. Uraltceva, Linear and Quasilinear Equations of Parabolic Type, (Russian) Transl. Math. Mono. vol. 23, Amer. Math. Soc., Providence, R. I., U. S. A., 1968.  Google Scholar

[23]

S. J. Osher and J. V. Ralston, L1 stability of traveling waves with applications to convective porous media flow, Comm. Pure Appl. Math., 35 (1982), 737-749.  doi: 10.1002/cpa.3160350602.  Google Scholar

[24]

M. del Pino and M. Sáez, On the extinction profile for solutions of $u_t=\Delta u^{\frac{N-2}{N+2}}$, Indiana Univ. Math. J., 50 (2001), 611-628.  doi: 10.1512/iumj.2001.50.1876.  Google Scholar

[25]

J. L. Vázquez, Nonexistence of solutions for nonlinear heat equations of fast-diffusion type, J. Math. Pures Appl.(9), 71 (1992), 503-526.   Google Scholar

[26]

J. L. Vázquez, Smoothing and Decay Estimates for Nonlinear Diffusion Equations. Equations of Porous Medium Type, Oxford Lecture Series in Mathematics and its Applications 33, Oxford University Press, Oxford, 2006. doi: 10.1093/acprof:oso/9780199202973.001.0001.  Google Scholar

[27]

J. L. Vázquez and M. Winkler, The evolution of singularities in fast diffusion equations: Infinite time blow-down, SIAM J. Math. Anal., 43 (2011), 1499-1535.  doi: 10.1137/100809465.  Google Scholar

[28]

R. Ye, Global existence and convergence of Yamabe flow, J. Differential Geom., 39 (1994), 35-50.  doi: 10.4310/jdg/1214454674.  Google Scholar

show all references

References:
[1]

D. G. Aronson, The porous medium equation, Nonlinear diffusion problems, (Montecatini Terme, 1985), 1-46, Lecture Notes in Math., 1224, Springer, Berlin, 1986. doi: 10.1007/BFb0072687.  Google Scholar

[2]

A. BlanchetM. BonforteJ. DolbeaultG. Grillo and J. L. Vázquez, Asymptotics of the fast diffusion equation via entropy estimates, Arch. Ration. Mech. Anal., 191 (2009), 347-385.  doi: 10.1007/s00205-008-0155-z.  Google Scholar

[3]

M. BonforteJ. DolbeaultG. Grillo and J. L. Vázquez, Sharp rates of decay of solutions to the nonlinear fast diffusion equation via functional inequalities, Proc. Natl. Acad. Sci. USA, 107 (2010), 16459-16464.  doi: 10.1073/pnas.1003972107.  Google Scholar

[4]

E. Chasseigne and J. L. Vázquez, Theory of extended solutions for fast-diffusion equations in optimal classes of data. Radiation from singularities, Arch. Ration. Mech. Anal., 164 (2002), 133-187.  doi: 10.1007/s00205-002-0210-0.  Google Scholar

[5]

P. Daskalopoulos and C. E. Kenig, Degenerate Diffusion: Initial Value Problems and Local Regularity Theory, EMS Tracts in Mathematics, 1. European Mathematical Society (EMS), Zürich, 2007. doi: 10.4171/033.  Google Scholar

[6]

P. Daskalopoulos, J. King and N. Sesum, Extinction profile of complete non-compact solutions to the Yamabe flow, arXiv: 1306.0859. Google Scholar

[7]

P. Daskalopoulos, M. del Pino and N. Sesum, Type Ⅱ ancient compact solutions to the Yamabe flow, J. Reine Angew. Math., (2015), http://dx.doi.org/10.1515/crelle-2015-0048 in press. doi: 10.1515/crelle-2015-0048.  Google Scholar

[8]

P. Daskalopoulos and N. Sesum, On the extinction profile of solutions to fast diffusion, J. Reine Angew. Math., 622 (2008), 95-119.  doi: 10.1515/CRELLE.2008.066.  Google Scholar

[9]

P. Daskalopoulos and N. Sesum, The classification of locally conformally flat Yamabe solitons, Adv. Math., 240 (2013), 346-369.  doi: 10.1016/j.aim.2013.03.011.  Google Scholar

[10]

M. FilaJ. L. VázquezM. Winkler and E. Yanagida, Rate of convergence to Barenblatt profiles for the fast diffusion equation, Arch. Ration. Mech. Anal., 204 (2012), 599-625.  doi: 10.1007/s00205-011-0486-z.  Google Scholar

[11]

M. Fila and M. Winkler, Optimal rates of convergence to the singular Barenblatt profile for the fast diffusion equation, Proc. Roy. Soc. Edinburgh Sect. A, 146 (2016), 309-324.  doi: 10.1017/S0308210515000554.  Google Scholar

[12]

M. Fila and M. Winkler, Rate of convergence to separable solutions of the fast diffusion equation, Israel J. Math., 213 (2016), 1-32.  doi: 10.1007/s11856-016-1319-4.  Google Scholar

[13]

M. Fila and M. Winkler, Slow growth of solutions of superfast diffusion equations with unbounded initial data, J. London Math. Soc.(2), 95 (2017), 659-683.  doi: 10.1112/jlms.12029.  Google Scholar

[14]

M. A. Herrero and M. Pierre, The Cauchy problem for $u_t = \Delta u^m$ when $0 < m < 1$, Trans. Amer. Math. Soc., 291 (1985), 145-158.  doi: 10.1090/S0002-9947-1985-0797051-0.  Google Scholar

[15]

S.Y. Hsu, Asymptotic profile of solutions of a singular diffusion equation as $t \to∞$, Nonlinear Anal., 48 (2002), 781-790.  doi: 10.1016/S0362-546X(00)00214-5.  Google Scholar

[16]

S. Y. Hsu, Singular limit and exact decay rate of a nonlinear elliptic equation, Nonlinear Anal., 75 (2012), 3443-3455.  doi: 10.1016/j.na.2012.01.009.  Google Scholar

[17]

S. Y. Hsu, Existence and asymptotic behaviour of solutions of the very fast diffusion equation, Manuscripta Math., 140 (2013), 441-460.  doi: 10.1007/s00229-012-0576-8.  Google Scholar

[18]

K. M. Hui, On some Dirichlet and Cauchy problems for a singular diffusion equation, Differential Integral Equations, 15 (2002), 769-804.   Google Scholar

[19]

K. M. Hui, Singular limit of solutions of the very fast diffusion equation, Nonlinear Anal., 68 (2008), 1120-1147.  doi: 10.1016/j.na.2006.12.009.  Google Scholar

[20]

K. M. Hui, Asymptotic behaviour of solutions of the fast diffusion equation near its extinction time, J. Math. Anal. Appl., 454 (2017), 695-715.  doi: 10.1016/j.jmaa.2017.05.006.  Google Scholar

[21]

T. Kato, Perturbation Theory for Linear Operators, 2nd ed., Grundlehren Math. Wiss. 132, Springer-Verlag, Berlin, New York, 1976.  Google Scholar

[22]

O. A. Ladyzenskaya, V. A. Solonnikov and N. N. Uraltceva, Linear and Quasilinear Equations of Parabolic Type, (Russian) Transl. Math. Mono. vol. 23, Amer. Math. Soc., Providence, R. I., U. S. A., 1968.  Google Scholar

[23]

S. J. Osher and J. V. Ralston, L1 stability of traveling waves with applications to convective porous media flow, Comm. Pure Appl. Math., 35 (1982), 737-749.  doi: 10.1002/cpa.3160350602.  Google Scholar

[24]

M. del Pino and M. Sáez, On the extinction profile for solutions of $u_t=\Delta u^{\frac{N-2}{N+2}}$, Indiana Univ. Math. J., 50 (2001), 611-628.  doi: 10.1512/iumj.2001.50.1876.  Google Scholar

[25]

J. L. Vázquez, Nonexistence of solutions for nonlinear heat equations of fast-diffusion type, J. Math. Pures Appl.(9), 71 (1992), 503-526.   Google Scholar

[26]

J. L. Vázquez, Smoothing and Decay Estimates for Nonlinear Diffusion Equations. Equations of Porous Medium Type, Oxford Lecture Series in Mathematics and its Applications 33, Oxford University Press, Oxford, 2006. doi: 10.1093/acprof:oso/9780199202973.001.0001.  Google Scholar

[27]

J. L. Vázquez and M. Winkler, The evolution of singularities in fast diffusion equations: Infinite time blow-down, SIAM J. Math. Anal., 43 (2011), 1499-1535.  doi: 10.1137/100809465.  Google Scholar

[28]

R. Ye, Global existence and convergence of Yamabe flow, J. Differential Geom., 39 (1994), 35-50.  doi: 10.4310/jdg/1214454674.  Google Scholar

[1]

Anderson L. A. de Araujo, Marcelo Montenegro. Existence of solution and asymptotic behavior for a class of parabolic equations. Communications on Pure & Applied Analysis, 2021, 20 (3) : 1213-1227. doi: 10.3934/cpaa.2021017

[2]

Meng-Xue Chang, Bang-Sheng Han, Xiao-Ming Fan. Global dynamics of the solution for a bistable reaction diffusion equation with nonlocal effect. Electronic Research Archive, , () : -. doi: 10.3934/era.2021024

[3]

Thomas Y. Hou, Ruo Li. Nonexistence of locally self-similar blow-up for the 3D incompressible Navier-Stokes equations. Discrete & Continuous Dynamical Systems, 2007, 18 (4) : 637-642. doi: 10.3934/dcds.2007.18.637

[4]

Francis Hounkpe, Gregory Seregin. An approximation of forward self-similar solutions to the 3D Navier-Stokes system. Discrete & Continuous Dynamical Systems, 2021  doi: 10.3934/dcds.2021059

[5]

Julian Tugaut. Captivity of the solution to the granular media equation. Kinetic & Related Models, 2021, 14 (2) : 199-209. doi: 10.3934/krm.2021002

[6]

Haili Qiao, Aijie Cheng. A fast high order method for time fractional diffusion equation with non-smooth data. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021073

[7]

Yongqiang Fu, Xiaoju Zhang. Global existence and asymptotic behavior of weak solutions for time-space fractional Kirchhoff-type diffusion equations. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021091

[8]

Zhiming Guo, Zhi-Chun Yang, Xingfu Zou. Existence and uniqueness of positive solution to a non-local differential equation with homogeneous Dirichlet boundary condition---A non-monotone case. Communications on Pure & Applied Analysis, 2012, 11 (5) : 1825-1838. doi: 10.3934/cpaa.2012.11.1825

[9]

Linlin Li, Bedreddine Ainseba. Large-time behavior of matured population in an age-structured model. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2561-2580. doi: 10.3934/dcdsb.2020195

[10]

Qiwei Wu, Liping Luan. Large-time behavior of solutions to unipolar Euler-Poisson equations with time-dependent damping. Communications on Pure & Applied Analysis, 2021, 20 (3) : 995-1023. doi: 10.3934/cpaa.2021003

[11]

Olivier Ley, Erwin Topp, Miguel Yangari. Some results for the large time behavior of Hamilton-Jacobi equations with Caputo time derivative. Discrete & Continuous Dynamical Systems, 2021, 41 (8) : 3555-3577. doi: 10.3934/dcds.2021007

[12]

Changpin Li, Zhiqiang Li. Asymptotic behaviors of solution to partial differential equation with Caputo–Hadamard derivative and fractional Laplacian: Hyperbolic case. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021023

[13]

Xiongxiong Bao, Wan-Tong Li. Existence and stability of generalized transition waves for time-dependent reaction-diffusion systems. Discrete & Continuous Dynamical Systems - B, 2021, 26 (7) : 3621-3641. doi: 10.3934/dcdsb.2020249

[14]

Yumi Yahagi. Construction of unique mild solution and continuity of solution for the small initial data to 1-D Keller-Segel system. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021099

[15]

Burcu Gürbüz. A computational approximation for the solution of retarded functional differential equations and their applications to science and engineering. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021069

[16]

Filippo Giuliani. Transfers of energy through fast diffusion channels in some resonant PDEs on the circle. Discrete & Continuous Dynamical Systems, 2021  doi: 10.3934/dcds.2021068

[17]

Vladimir Georgiev, Sandra Lucente. Focusing nlkg equation with singular potential. Communications on Pure & Applied Analysis, 2018, 17 (4) : 1387-1406. doi: 10.3934/cpaa.2018068

[18]

Zaihong Wang, Jin Li, Tiantian Ma. An erratum note on the paper: Positive periodic solution for Brillouin electron beam focusing system. Discrete & Continuous Dynamical Systems - B, 2013, 18 (7) : 1995-1997. doi: 10.3934/dcdsb.2013.18.1995

[19]

Shanjian Tang, Fu Zhang. Path-dependent optimal stochastic control and viscosity solution of associated Bellman equations. Discrete & Continuous Dynamical Systems, 2015, 35 (11) : 5521-5553. doi: 10.3934/dcds.2015.35.5521

[20]

Melis Alpaslan Takan, Refail Kasimbeyli. Multiobjective mathematical models and solution approaches for heterogeneous fixed fleet vehicle routing problems. Journal of Industrial & Management Optimization, 2021, 17 (4) : 2073-2095. doi: 10.3934/jimo.2020059

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (64)
  • HTML views (74)
  • Cited by (5)

Other articles
by authors

[Back to Top]