We study the asymptotic large time behavior of singular solutions of the fast diffusion equation
$Δ f^m+α f+β x· \nabla f=0 \,\,\,\,\,\,\mbox{ in ${\mathbb R}^n\setminus\{0\}$}$
with $\lim_{|x|\to0}|x|^{\frac{ α}{ β}}f_i(x)=A_i$ and $\lim_{|x|\to∞}|x|^{\frac{n-2}{m}}{f_i}(x)= D_{A_i} $ for some constants $D_{A_i}>0$. When $\frac{2}{1-m} < γ < n$, under an integrability condition on the initial value $u_0$ of the singular solution $u$, we prove that the rescaled function
$\tilde u(y, τ):= t^{\, α} u(t^{\, β} y, t),\,\,\,\,\,\, { τ:=\log t}, $
converges to some self-similar profile $f$ as $τ\to∞$.
Citation: |
D. G. Aronson, The porous medium equation, Nonlinear diffusion problems, (Montecatini Terme, 1985), 1-46, Lecture Notes in Math., 1224, Springer, Berlin, 1986.
doi: 10.1007/BFb0072687.![]() ![]() ![]() |
|
A. Blanchet
, M. Bonforte
, J. Dolbeault
, G. Grillo
and J. L. Vázquez
, Asymptotics of the fast diffusion equation via entropy estimates, Arch. Ration. Mech. Anal., 191 (2009)
, 347-385.
doi: 10.1007/s00205-008-0155-z.![]() ![]() ![]() |
|
M. Bonforte
, J. Dolbeault
, G. Grillo
and J. L. Vázquez
, Sharp rates of decay of solutions to the nonlinear fast diffusion equation via functional inequalities, Proc. Natl. Acad. Sci. USA, 107 (2010)
, 16459-16464.
doi: 10.1073/pnas.1003972107.![]() ![]() ![]() |
|
E. Chasseigne
and J. L. Vázquez
, Theory of extended solutions for fast-diffusion equations in optimal classes of data. Radiation from singularities, Arch. Ration. Mech. Anal., 164 (2002)
, 133-187.
doi: 10.1007/s00205-002-0210-0.![]() ![]() ![]() |
|
P. Daskalopoulos and C. E. Kenig,
Degenerate Diffusion: Initial Value Problems and Local Regularity Theory, EMS Tracts in Mathematics, 1. European Mathematical Society (EMS), Zürich, 2007.
doi: 10.4171/033.![]() ![]() ![]() |
|
P. Daskalopoulos, J. King and N. Sesum, Extinction profile of complete non-compact solutions to the Yamabe flow, arXiv: 1306.0859.
![]() |
|
P. Daskalopoulos, M. del Pino and N. Sesum, Type Ⅱ ancient compact solutions to the Yamabe flow, J. Reine Angew. Math., (2015), http://dx.doi.org/10.1515/crelle-2015-0048 in press.
doi: 10.1515/crelle-2015-0048.![]() ![]() |
|
P. Daskalopoulos
and N. Sesum
, On the extinction profile of solutions to fast diffusion, J. Reine Angew. Math., 622 (2008)
, 95-119.
doi: 10.1515/CRELLE.2008.066.![]() ![]() ![]() |
|
P. Daskalopoulos
and N. Sesum
, The classification of locally conformally flat Yamabe solitons, Adv. Math., 240 (2013)
, 346-369.
doi: 10.1016/j.aim.2013.03.011.![]() ![]() ![]() |
|
M. Fila
, J. L. Vázquez
, M. Winkler
and E. Yanagida
, Rate of convergence to Barenblatt profiles for the fast diffusion equation, Arch. Ration. Mech. Anal., 204 (2012)
, 599-625.
doi: 10.1007/s00205-011-0486-z.![]() ![]() ![]() |
|
M. Fila
and M. Winkler
, Optimal rates of convergence to the singular Barenblatt profile for the fast diffusion equation, Proc. Roy. Soc. Edinburgh Sect. A, 146 (2016)
, 309-324.
doi: 10.1017/S0308210515000554.![]() ![]() ![]() |
|
M. Fila
and M. Winkler
, Rate of convergence to separable solutions of the fast diffusion equation, Israel J. Math., 213 (2016)
, 1-32.
doi: 10.1007/s11856-016-1319-4.![]() ![]() ![]() |
|
M. Fila
and M. Winkler
, Slow growth of solutions of superfast diffusion equations with unbounded initial data, J. London Math. Soc., 95 (2017)
, 659-683.
doi: 10.1112/jlms.12029.![]() ![]() |
|
M. A. Herrero
and M. Pierre
, The Cauchy problem for $u_t = \Delta u^m$ when $0 < m < 1$, Trans. Amer. Math. Soc., 291 (1985)
, 145-158.
doi: 10.1090/S0002-9947-1985-0797051-0.![]() ![]() ![]() |
|
S.Y. Hsu
, Asymptotic profile of solutions of a singular diffusion equation as $t \to∞$, Nonlinear Anal., 48 (2002)
, 781-790.
doi: 10.1016/S0362-546X(00)00214-5.![]() ![]() ![]() |
|
S. Y. Hsu
, Singular limit and exact decay rate of a nonlinear elliptic equation, Nonlinear Anal., 75 (2012)
, 3443-3455.
doi: 10.1016/j.na.2012.01.009.![]() ![]() ![]() |
|
S. Y. Hsu
, Existence and asymptotic behaviour of solutions of the very fast diffusion equation, Manuscripta Math., 140 (2013)
, 441-460.
doi: 10.1007/s00229-012-0576-8.![]() ![]() ![]() |
|
K. M. Hui
, On some Dirichlet and Cauchy problems for a singular diffusion equation, Differential Integral Equations, 15 (2002)
, 769-804.
![]() ![]() |
|
K. M. Hui
, Singular limit of solutions of the very fast diffusion equation, Nonlinear Anal., 68 (2008)
, 1120-1147.
doi: 10.1016/j.na.2006.12.009.![]() ![]() ![]() |
|
K. M. Hui
, Asymptotic behaviour of solutions of the fast diffusion equation near its extinction time, J. Math. Anal. Appl., 454 (2017)
, 695-715.
doi: 10.1016/j.jmaa.2017.05.006.![]() ![]() ![]() |
|
T. Kato,
Perturbation Theory for Linear Operators, 2nd ed., Grundlehren Math. Wiss. 132, Springer-Verlag, Berlin, New York, 1976.
![]() ![]() |
|
O. A. Ladyzenskaya, V. A. Solonnikov and N. N. Uraltceva,
Linear and Quasilinear Equations of Parabolic Type, (Russian) Transl. Math. Mono. vol. 23, Amer. Math. Soc., Providence, R. I., U. S. A., 1968.
![]() ![]() |
|
S. J. Osher
and J. V. Ralston
, L1 stability of traveling waves with applications to convective porous media flow, Comm. Pure Appl. Math., 35 (1982)
, 737-749.
doi: 10.1002/cpa.3160350602.![]() ![]() ![]() |
|
M. del Pino
and M. Sáez
, On the extinction profile for solutions of $u_t=\Delta u^{\frac{N-2}{N+2}}$, Indiana Univ. Math. J., 50 (2001)
, 611-628.
doi: 10.1512/iumj.2001.50.1876.![]() ![]() ![]() |
|
J. L. Vázquez
, Nonexistence of solutions for nonlinear heat equations of fast-diffusion type, J. Math. Pures Appl., 71 (1992)
, 503-526.
![]() ![]() |
|
J. L. Vázquez,
Smoothing and Decay Estimates for Nonlinear Diffusion Equations. Equations of Porous Medium Type, Oxford Lecture Series in Mathematics and its Applications 33, Oxford University Press, Oxford, 2006.
doi: 10.1093/acprof:oso/9780199202973.001.0001.![]() ![]() ![]() |
|
J. L. Vázquez
and M. Winkler
, The evolution of singularities in fast diffusion equations: Infinite time blow-down, SIAM J. Math. Anal., 43 (2011)
, 1499-1535.
doi: 10.1137/100809465.![]() ![]() ![]() |
|
R. Ye
, Global existence and convergence of Yamabe flow, J. Differential Geom., 39 (1994)
, 35-50.
doi: 10.4310/jdg/1214454674.![]() ![]() ![]() |