-
Previous Article
Two dimensional Riemann problems for the nonlinear wave system: Rarefaction wave interactions
- DCDS Home
- This Issue
-
Next Article
Stability of half-degree point defect profiles for 2-D nematic liquid crystal
Perturbed fractional eigenvalue problems
1. | Department of Mathematics, University of Craiova, 200585 Craiova, Romania |
2. | "Simion Stoilow" Institute of Mathematics of the Romanian Academy, 010702 Bucharest, Romania |
3. | Department of Mathematics and Computer Science, University Politehnica of Bucharest, 060042 Bucharest, Romania |
4. | "Simion Stoilow" Institute of Mathematics of the Romanian Academy, 010702 Bucharest, Romania |
Let $Ω\subset\mathbb{R}^N$ ($N≥2$) be a bounded domain with Lipschitz boundary. For each $p∈(1,∞)$ and $s∈ (0,1)$ we denote by $(-Δ_p)^s$ the fractional $(s,p)$-Laplacian operator. In this paper we study the existence of nontrivial solutions for a perturbation of the eigenvalue problem $(-Δ_p)^s u=λ |u|^{p-2}u$, in $Ω$, $u=0$, in $\mathbb{R}^N\backslash Ω$, with a fractional $(t,q)$-Laplacian operator in the left-hand side of the equation, when $t∈(0,1)$ and $q∈(1,∞)$ are such that $s-N/p=t-N/q$. We show that nontrivial solutions for the perturbed eigenvalue problem exists if and only if parameter $λ$ is strictly larger than the first eigenvalue of the $(s,p)$-Laplacian.
References:
[1] |
M. Bocea and M. Mihăilescu, Existence of nonnegative viscosity solutions for a class of problems involving the $∞$-Laplacian, Nonlinear Differential Equations and Applications (NoDEA), 23 (2016), Art. 11, 21 pp.
doi: 10.1007/s00030-016-0373-2. |
[2] |
L. Brasco, E. Parini and M. Squassina,
Stability of variational eigenvalues for the fractional $p$-Laplacian, Discrete Continuous Dynam. Systems -A, 36 (2016), 1813-1845.
doi: 10.3934/dcds.2016.36.1813. |
[3] |
L. Del Pezzo, J. Fernandez Bonder and L. Lopez Rios, An optimization problem for the first eigenvalue of the $p$-fractional Laplacian, preprint, arXiv: 1601.03019v1. |
[4] |
L. Del Pezzo and A. Quaas,
Global bifurcation for fractional $p$-Laplacian and an application, Z. Anal. Anwend., 35 (2016), 411-447.
doi: 10.4171/ZAA/1572. |
[5] |
E. Di Nezza, G. Palatucci and E. Valdinoci,
Hitchhiker's guide to the fractional Sobolev spaces, Bull. Sci. Math., 136 (2012), 521-573.
doi: 10.1016/j.bulsci.2011.12.004. |
[6] |
M. Fărcăşeanu, M. Mihăilescu and D. Stancu-Dumitru,
On the set of eigenvalues of some PDEs with homogeneous Neumann boundary condition, Nonlinear Analysis, 116 (2015), 19-25.
doi: 10.1016/j.na.2014.12.019. |
[7] |
R. Ferreira and M. Perez-Llanos, Limit problems for a Fractional $p$-Laplacian as $p \to \infty $, Nonlinear Differential Equations and Applications (NoDEA), 23 (2016), Art. 14, 28 pp.
doi: 10.1007/s00030-016-0368-z. |
[8] |
G. Franzina and G. Palatucci,
Fractional $p$-eigenvalues, Riv. Mat. Univ. Parma, 5 (2014), 373-386.
|
[9] |
P. Grisvard,
Elliptic Problems in Nonsmooth Domains, Pitman, Boston, MA, 1985. |
[10] |
E. Lindgren and P. Lindqvist,
Fractional eigenvalues, Calc. Var., 49 (2014), 795-826.
doi: 10.1007/s00526-013-0600-1. |
[11] |
M. Mihăilescu,
An eigenvalue problem possessing a continuous family of eigenvalues plus an isolated eigenvalue, Communications on Pure and Applied Analysis, 10 (2011), 701-708.
doi: 10.3934/cpaa.2011.10.701. |
[12] |
M. Mihăilescu and G. Moroşanu,
Eigenvalues of $-Δ_p -Δ_q$ under Neumann boundary condition, Canadian Mathematical Bulletin, 59 (2016), 606-616.
doi: 10.4153/CMB-2016-025-2. |
show all references
References:
[1] |
M. Bocea and M. Mihăilescu, Existence of nonnegative viscosity solutions for a class of problems involving the $∞$-Laplacian, Nonlinear Differential Equations and Applications (NoDEA), 23 (2016), Art. 11, 21 pp.
doi: 10.1007/s00030-016-0373-2. |
[2] |
L. Brasco, E. Parini and M. Squassina,
Stability of variational eigenvalues for the fractional $p$-Laplacian, Discrete Continuous Dynam. Systems -A, 36 (2016), 1813-1845.
doi: 10.3934/dcds.2016.36.1813. |
[3] |
L. Del Pezzo, J. Fernandez Bonder and L. Lopez Rios, An optimization problem for the first eigenvalue of the $p$-fractional Laplacian, preprint, arXiv: 1601.03019v1. |
[4] |
L. Del Pezzo and A. Quaas,
Global bifurcation for fractional $p$-Laplacian and an application, Z. Anal. Anwend., 35 (2016), 411-447.
doi: 10.4171/ZAA/1572. |
[5] |
E. Di Nezza, G. Palatucci and E. Valdinoci,
Hitchhiker's guide to the fractional Sobolev spaces, Bull. Sci. Math., 136 (2012), 521-573.
doi: 10.1016/j.bulsci.2011.12.004. |
[6] |
M. Fărcăşeanu, M. Mihăilescu and D. Stancu-Dumitru,
On the set of eigenvalues of some PDEs with homogeneous Neumann boundary condition, Nonlinear Analysis, 116 (2015), 19-25.
doi: 10.1016/j.na.2014.12.019. |
[7] |
R. Ferreira and M. Perez-Llanos, Limit problems for a Fractional $p$-Laplacian as $p \to \infty $, Nonlinear Differential Equations and Applications (NoDEA), 23 (2016), Art. 14, 28 pp.
doi: 10.1007/s00030-016-0368-z. |
[8] |
G. Franzina and G. Palatucci,
Fractional $p$-eigenvalues, Riv. Mat. Univ. Parma, 5 (2014), 373-386.
|
[9] |
P. Grisvard,
Elliptic Problems in Nonsmooth Domains, Pitman, Boston, MA, 1985. |
[10] |
E. Lindgren and P. Lindqvist,
Fractional eigenvalues, Calc. Var., 49 (2014), 795-826.
doi: 10.1007/s00526-013-0600-1. |
[11] |
M. Mihăilescu,
An eigenvalue problem possessing a continuous family of eigenvalues plus an isolated eigenvalue, Communications on Pure and Applied Analysis, 10 (2011), 701-708.
doi: 10.3934/cpaa.2011.10.701. |
[12] |
M. Mihăilescu and G. Moroşanu,
Eigenvalues of $-Δ_p -Δ_q$ under Neumann boundary condition, Canadian Mathematical Bulletin, 59 (2016), 606-616.
doi: 10.4153/CMB-2016-025-2. |
[1] |
Sabri Bahrouni, Hichem Ounaies. Embedding theorems in the fractional Orlicz-Sobolev space and applications to non-local problems. Discrete and Continuous Dynamical Systems, 2020, 40 (5) : 2917-2944. doi: 10.3934/dcds.2020155 |
[2] |
Raffaella Servadei, Enrico Valdinoci. Variational methods for non-local operators of elliptic type. Discrete and Continuous Dynamical Systems, 2013, 33 (5) : 2105-2137. doi: 10.3934/dcds.2013.33.2105 |
[3] |
Shixiu Zheng, Zhilei Xu, Huan Yang, Jintao Song, Zhenkuan Pan. Comparisons of different methods for balanced data classification under the discrete non-local total variational framework. Mathematical Foundations of Computing, 2019, 2 (1) : 11-28. doi: 10.3934/mfc.2019002 |
[4] |
Ritu Agarwal, Kritika, Sunil Dutt Purohit, Devendra Kumar. Mathematical modelling of cytosolic calcium concentration distribution using non-local fractional operator. Discrete and Continuous Dynamical Systems - S, 2021, 14 (10) : 3387-3399. doi: 10.3934/dcdss.2021017 |
[5] |
Umberto Biccari. Internal control for a non-local Schrödinger equation involving the fractional Laplace operator. Evolution Equations and Control Theory, 2022, 11 (1) : 301-324. doi: 10.3934/eect.2021014 |
[6] |
Rafael Abreu, Cristian Morales-Rodrigo, Antonio Suárez. Some eigenvalue problems with non-local boundary conditions and applications. Communications on Pure and Applied Analysis, 2014, 13 (6) : 2465-2474. doi: 10.3934/cpaa.2014.13.2465 |
[7] |
Walter Allegretto, Yanping Lin, Shuqing Ma. On the box method for a non-local parabolic variational inequality. Discrete and Continuous Dynamical Systems - B, 2001, 1 (1) : 71-88. doi: 10.3934/dcdsb.2001.1.71 |
[8] |
Anouar Bahrouni, VicenŢiu D. RĂdulescu. On a new fractional Sobolev space and applications to nonlocal variational problems with variable exponent. Discrete and Continuous Dynamical Systems - S, 2018, 11 (3) : 379-389. doi: 10.3934/dcdss.2018021 |
[9] |
Bin Guo, Wenjie Gao. Finite-time blow-up and extinction rates of solutions to an initial Neumann problem involving the $p(x,t)-Laplace$ operator and a non-local term. Discrete and Continuous Dynamical Systems, 2016, 36 (2) : 715-730. doi: 10.3934/dcds.2016.36.715 |
[10] |
Anouar Bahrouni. Trudinger-Moser type inequality and existence of solution for perturbed non-local elliptic operators with exponential nonlinearity. Communications on Pure and Applied Analysis, 2017, 16 (1) : 243-252. doi: 10.3934/cpaa.2017011 |
[11] |
Bouthaina Abdelhedi, Hatem Zaag. Single point blow-up and final profile for a perturbed nonlinear heat equation with a gradient and a non-local term. Discrete and Continuous Dynamical Systems - S, 2021, 14 (8) : 2607-2623. doi: 10.3934/dcdss.2021032 |
[12] |
Alexander V. Rezounenko, Petr Zagalak. Non-local PDEs with discrete state-dependent delays: Well-posedness in a metric space. Discrete and Continuous Dynamical Systems, 2013, 33 (2) : 819-835. doi: 10.3934/dcds.2013.33.819 |
[13] |
Yanan Li, Alexandre N. Carvalho, Tito L. M. Luna, Estefani M. Moreira. A non-autonomous bifurcation problem for a non-local scalar one-dimensional parabolic equation. Communications on Pure and Applied Analysis, 2020, 19 (11) : 5181-5196. doi: 10.3934/cpaa.2020232 |
[14] |
Massimiliano Ferrara, Giovanni Molica Bisci, Binlin Zhang. Existence of weak solutions for non-local fractional problems via Morse theory. Discrete and Continuous Dynamical Systems - B, 2014, 19 (8) : 2483-2499. doi: 10.3934/dcdsb.2014.19.2483 |
[15] |
Joseph G. Conlon, André Schlichting. A non-local problem for the Fokker-Planck equation related to the Becker-Döring model. Discrete and Continuous Dynamical Systems, 2019, 39 (4) : 1821-1889. doi: 10.3934/dcds.2019079 |
[16] |
Christos V. Nikolopoulos, Georgios E. Zouraris. Numerical solution of a non-local elliptic problem modeling a thermistor with a finite element and a finite volume method. Conference Publications, 2007, 2007 (Special) : 768-778. doi: 10.3934/proc.2007.2007.768 |
[17] |
Monica Marras, Nicola Pintus, Giuseppe Viglialoro. On the lifespan of classical solutions to a non-local porous medium problem with nonlinear boundary conditions. Discrete and Continuous Dynamical Systems - S, 2020, 13 (7) : 2033-2045. doi: 10.3934/dcdss.2020156 |
[18] |
Xing-Bin Pan. Variational and operator methods for Maxwell-Stokes system. Discrete and Continuous Dynamical Systems, 2020, 40 (6) : 3909-3955. doi: 10.3934/dcds.2020036 |
[19] |
Ichrak Bouacida, Mourad Kerboua, Sami Segni. Controllability results for Sobolev type $ \psi - $Hilfer fractional backward perturbed integro-differential equations in Hilbert space. Evolution Equations and Control Theory, 2022 doi: 10.3934/eect.2022028 |
[20] |
Qiyu Jin, Ion Grama, Quansheng Liu. Convergence theorems for the Non-Local Means filter. Inverse Problems and Imaging, 2018, 12 (4) : 853-881. doi: 10.3934/ipi.2018036 |
2020 Impact Factor: 1.392
Tools
Metrics
Other articles
by authors
[Back to Top]