We analyze rarefaction wave interactions of self-similar transonic irrotational flow in gas dynamics for two dimensional Riemann problems. We establish the existence result of the supersonic solution to the prototype nonlinear wave system for the sectorial Riemann data, and study the formation of the sonic boundary and the transonic shock. The transition from the sonic boundary to the shock boundary inherits at least two types of degeneracies (1) the system is sonic, and in addition (2) the angular derivative of the solution becomes zero where the sonic and shock boundaries meet.
Citation: |
Figure 8.
Density plots: Left figure is the cross section in the radial direction for a fixed angle
[1] |
S. Bang, Interaction of three and four rarefaction waves of the pressure-gradient system, J. Differential Equations, 246 (2009), 453-481.
doi: 10.1016/j.jde.2008.10.001.![]() ![]() ![]() |
[2] |
S. Čanić, B. L. Keyfitz and E. H. Kim, Free boundary problems for the unsteady transonic small disturbance equation: Transonic regular reflection, Methods and Applications of Analysis, 7 (2000), 313-335.
doi: 10.4310/MAA.2000.v7.n2.a4.![]() ![]() ![]() |
[3] |
S. Čanić, B. L. Keyfitz and E. H. Kim, A free boundary problem for a quasi-linear degenerate elliptic equation: Regular reflection of weak shocks, Communications on Pure and Applied Mathematics, 55 (2002), 71-92.
doi: 10.1002/cpa.10013.![]() ![]() ![]() |
[4] |
S. Čanić, B. L. Keyfitz and E. H. Kim, Mixed hyperbolic-elliptic systems in self-similar flows, Boletim da Sociedade Brasileira de Matemática, 32 (2001), 377-399.
doi: 10.1007/BF01233673.![]() ![]() ![]() |
[5] |
S. Čanić, B. L. Keyfitz and E. H. Kim, Free boundary problems for nonlinear wave systems: Mach stems for interacting shocks, SIAM J. Math. Anal., 37 (2006), 1947-1977.
doi: 10.1137/S003614100342989X.![]() ![]() ![]() |
[6] |
G.-Q. Chen, X. Deng and W. Xiang, Shock diffraction by convex cornered wedges for the nonlinear wave system, Arch. Ration. Mech. Anal., 211 (2014), 61-112.
doi: 10.1007/s00205-013-0681-1.![]() ![]() ![]() |
[7] |
S. Chen and B. Fang, Stability of transonic shocks in supersonic flow past a wedge, J. Differential Equations, 233 (2007), 105-135.
doi: 10.1016/j.jde.2006.09.020.![]() ![]() ![]() |
[8] |
S. Chen, Mixed type equations in gas dynamics, Quart. Appl. Math., 68 (2010), 487-511.
doi: 10.1090/S0033-569X-2010-01164-9.![]() ![]() ![]() |
[9] |
R. Courant and K. O. Friedrichs,
Supersonic Flow and Shock Waves, Springer Verlag, New York, 1948.
![]() ![]() |
[10] |
C. M. Dafermos,
Hyperbolic Conservation Laws in Continuum Physics, $4^{th}$ edition, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 325. Springer-Verlag, Berlin, 2016.
doi: 10.1007/978-3-662-49451-6.![]() ![]() ![]() |
[11] |
Z. Dai and T. Zhang, Existence of a global smooth solution for a degenerate Goursat problem of gas dynamics, Arch. Ration. Mech. Anal., 155 (2000), 277-298.
doi: 10.1007/s002050000113.![]() ![]() ![]() |
[12] |
V. Elling and T.-P. Liu, Supersonic flow onto a solid wedge, Comm. Pure Appl. Math., 61 (2008), 1347-1448.
doi: 10.1002/cpa.20231.![]() ![]() ![]() |
[13] |
J. Glimm, X. Ji, J. Li, X. Li, P. Zhang, T. Zhang and Y. Zheng, Transonic shock formation in a rarefaction Riemann problem for the 2D compressible Euler equations, SIAM J. Appl. Math., 69 (2008), 720-742.
doi: 10.1137/07070632X.![]() ![]() ![]() |
[14] |
K. Jegdic, B. L. Keyfitz and S. Čanić, Transonic regular reflection for the nonlinear wave system, Journal of Hyperbolic Differential Equations, 3 (2006), 443-474.
doi: 10.1142/S0219891606000859.![]() ![]() ![]() |
[15] |
E. H. Kim, A global subsonic solution to an interacting transonic shock for the self-similar nonlinear wave equation, J. Differential Equations, 248 (2010), 2906-2930.
doi: 10.1016/j.jde.2010.02.021.![]() ![]() ![]() |
[16] |
E. H. Kim, An interaction of a rarefaction wave and a transonic shock for the self-similar two-dimensional nonlinear wave system, Comm. Partial Differential Equations, 37 (2012), 610-646.
doi: 10.1080/03605302.2011.653615.![]() ![]() ![]() |
[17] |
E. H. Kim and C.-M. Lee, Transonic shock reflection problems for the self-similar two-dimensional nonlinear wave system, Nonlinear Anal., 79 (2013), 85-102.
doi: 10.1016/j.na.2012.11.002.![]() ![]() ![]() |
[18] |
A. Kurganov and E. Tadmor, Solution of two-dimensional Riemann problems for gas dynamics without Riemann problem solvers, Numer. Methods Partial Differential Equations, 18 (2002), 584-608.
doi: 10.1002/num.10025.![]() ![]() ![]() |
[19] |
P. D. Lax and X.-D. Liu, Solution of two-dimensional Riemann problems of gas dynamics by positive schemes, SIAM J. Sci. Comput., 19 (1998), 319-340.
doi: 10.1137/S1064827595291819.![]() ![]() ![]() |
[20] |
R. J. LeVeque,
Finite Volume Methods for Hyperbolic Problems, Cambridge University Press, 2002.
doi: 10.1017/CBO9780511791253.![]() ![]() ![]() |
[21] |
R. J. LeVeque et al., CLAWPACK 4. 3, http://www.amath.washington.edu/claw/.
![]() |
[22] |
C. S. Morawetz, Potential theory for regular and Mach reflection of a shock at a wedge, Comm. Pure Appl. Math., 47 (1994), 593-624.
doi: 10.1002/cpa.3160470502.![]() ![]() ![]() |
[23] |
P. L. Roe, Approximate Riemann solvers, parameter vectors, and difference schemes, J. Comput. Phys., 43 (1981), 357-372.
doi: 10.1016/0021-9991(81)90128-5.![]() ![]() ![]() |
[24] |
C. W. Schulz-Rinne, J. P. Collins and H. M. Glaz, Numerical solution of the Riemann problem for two-dimensional gas dynamics, SIAM J. Sci. Comput., 14 (1993), 1394-1414.
doi: 10.1137/0914082.![]() ![]() ![]() |
[25] |
D. Serre, Shock reflection in gas dynamics, Handbook of Mathematical Fluid Dynamics, vol. 4. Eds: S. Friedlander, D. Serre. Elsevier, North-Holland, (2007), 39–122.
![]() |
[26] |
D. Serre and H. Freistühler, The hyperbolic/elliptic transition in the multi-dimensional Riemann problem, Indiana Univ. Math. J., 62 (2013), 465-485.
doi: 10.1512/iumj.2013.62.4918.![]() ![]() ![]() |
[27] |
M. Sever, Admissibility of self-similar weak solutions of systems of conservation laws in two space variables and time, J. Hyperbolic Differ. Equ., 6 (2009), 433-481.
doi: 10.1142/S0219891609001897.![]() ![]() ![]() |
[28] |
W. Sheng and T. Zhang, The Riemann problem for the transportation equations in gas dynamics, Mem. Amer. Math. Soc., 137 (1999), ⅷ+77 pp.
doi: 10.1090/memo/0654.![]() ![]() ![]() |
[29] |
K. Song, The pressure-gradient system on non-smooth domains, Comm. Partial Differential Equations, 28 (2003), 199-221.
doi: 10.1081/PDE-120019379.![]() ![]() ![]() |
[30] |
K. Song and Y. Zheng, Semi-hyperbolic patches of solutions of the pressure gradient system, Discrete Contin. Dyn. Syst., 24 (2009), 1365-1380.
doi: 10.3934/dcds.2009.24.1365.![]() ![]() ![]() |
[31] |
A. M. Tesdall, R. Sanders and B. L. Keyfitz, The triple point paradox for the nonlinear wave system, SIAM J. Appl. Math., 67 (2006/07), 321-336.
doi: 10.1137/060660758.![]() ![]() ![]() |
[32] |
A. M. Tesdall, R. Sanders and B. L. Keyfitz, Self-similar solutions for the triple point paradox in gasdynamics, SIAM J. Appl. Math., 68 (2008), 1360-1377.
doi: 10.1137/070698567.![]() ![]() ![]() |
[33] |
Q. Wang and Y. Zheng, The regularity of semi-hyperbolic patches at sonic lines for the pressure gradient equation in gas dynamics, Indiana Univ. Math. J., 63 (2014), 385-402.
doi: 10.1512/iumj.2014.63.5244.![]() ![]() ![]() |
[34] |
T. Zhang and Y. Zheng, Conjecture on the structure of solutions of the Riemann problem for two-dimensional gas dynamics systems, SIAM J. Math. Anal., 21 (1990), 593-630.
doi: 10.1137/0521032.![]() ![]() ![]() |
[35] |
Y. Zheng, Two-dimensional regular shock reflection for the pressure gradient system of conservation laws, Acta Math. Appl. Sin. Engl. Ser., 22 (2006), 177-210.
doi: 10.1007/s10255-006-0296-5.![]() ![]() ![]() |
[36] |
Y. Zheng,
Systems of Conservation Laws. Two-dimensional Riemann Problems, Progress in Nonlinear Differential Equations and their Applications, 38. Birkhäuser Boston, Inc., Boston, MA, 2001.
doi: 10.1007/978-1-4612-0141-0.![]() ![]() ![]() |