We prove that, for semi-invertible linear cocycles, Lyapunov exponents of ergodic measures may be approximated by Lyapunov exponents on periodic points.
Citation: |
[1] |
L. Backes, Rigidity of fiber bunched cocycles, Bulletin of the Brazilian Mathematical Society, 46 (2015), 163-179.
doi: 10.1007/s00574-015-0089-7.![]() ![]() ![]() |
[2] |
L. Backes and A. Kocsard, Cohomology of dominated diffeomorphism-valued cocycles over hyperbolic systems, Ergodic Theory and Dynamical Systems, 36 (2016), 1703-1722.
doi: 10.1017/etds.2014.149.![]() ![]() ![]() |
[3] |
L. Barreira and Ya. Pesin,
Nonuniform Hyperbolicity: Dynamics of Systems with Nonzero Lyapunov Exponents, Cambridge University Press, 2007.
doi: 10.1017/CBO9781107326026.![]() ![]() ![]() |
[4] |
R. Bowen,
Equilibrium States and the Ergodic Theory of Anosov Diffeomorphisms, Lecture Notes in Mathematics 470. Springer-Verlag, 1975.
![]() ![]() |
[5] |
Y. Cao, Non-zero Lyapunov exponents and uniform hyperbolicity, Nonlinearity, 16 (2003), 1473-1479.
doi: 10.1088/0951-7715/16/4/316.![]() ![]() ![]() |
[6] |
X. Dai, On the approximation of Lyapunov exponents and a question suggested by Anatole Katok, Nonlinearity, 23 (2010), 513-528.
doi: 10.1088/0951-7715/23/3/004.![]() ![]() ![]() |
[7] |
R. de la Llave and A. Windsor, Livšic theorems for non-commutative groups including diffeomorphism groups and results on the existence of conformal structures for Anosov systems, Ergodic Theory and Dynamical Systems, 30 (2010), 1055-1100.
doi: 10.1017/S014338570900039X.![]() ![]() ![]() |
[8] |
D. Dragičević and G. Froyland, Hölder continuity of Oseledets splittings for semi-invertible operator cocycles, Ergodic Theory and Dynamical Systems, 2016, 21pp.
doi: 10.1017/etds.2016.55.![]() ![]() |
[9] |
G. Froyland, S. LLoyd and A. Quas, Coherent structures and isolated spectrum for Perron-Frobenius cocycles, Ergodic Theory and Dynamical Systems, 30 (2010), 729-756.
doi: 10.1017/S0143385709000339.![]() ![]() ![]() |
[10] |
B. Kalinin, Livšic theorem for matrix cocycles, Annals of Mathematics, 173 (2011), 1025-1042.
doi: 10.4007/annals.2011.173.2.11.![]() ![]() ![]() |
[11] |
B. Kalinin and V. Sadovskaya, Periodic approximation of Lyapunov exponents for Banach cocycles, arXiv: 1608.05757.
doi: 10.1017/etds.2017.43.![]() ![]() |
[12] |
A. Katok and B. Hasselblatt,
Introduction to the Modern Theory of Dynamical Systems, Cambridge University Press, London-New York, 1995.
doi: 10.1017/CBO9780511809187.![]() ![]() ![]() |
[13] |
A. Kocsard and R. Potrie, Livišic theorem for low-dimensional diffeomorphism cocycles, Commentarii Mathematici Helvetici, 91 (2016), 39-64.
doi: 10.4171/CMH/377.![]() ![]() ![]() |
[14] |
A. Livšic, Homology properties of Y-systems, Math. Zametki, 10 (1971), 758-763.
![]() |
[15] |
A. Livšic, Cohomology of dynamical systems, Math. USSR Izvestija, 6 (1972), 1278-1301.
![]() |
[16] |
V. Oseledets, A multiplicative ergodic theorem: Lyapunov characteristic numbers for dynamical systems, Trans. Moscow Math. Soc., 19 (1968), 179-210.
![]() ![]() |
[17] |
V. Sadovskaya, Cohomology of fiber bunched cocycles over hyperbolic systems, Ergodic Theory and Dynamical Systems, 35 (2015), 2669-2688.
doi: 10.1017/etds.2014.43.![]() ![]() ![]() |
[18] |
M. Viana,
Lectures on Lyapunov Exponents, Cambridge University Press, 2014.
doi: 10.1017/CBO9781139976602.![]() ![]() ![]() |
[19] |
Z. Wang and W. Sun, Lyapunov exponents of hyperbolic measures and hyperbolic periodic orbits, Trans. Amer. Math. Soc., 362 (2010), 4267-4282.
doi: 10.1090/S0002-9947-10-04947-0.![]() ![]() ![]() |