We present a new strategy for proving the Ambrose conjecture, a global version of the Cartan local lemma. We introduce the concepts of linking curves, unequivocal sets and sutured manifolds, and show that any sutured manifold satisfies the Ambrose conjecture. We then prove that the set of sutured Riemannian manifolds contains a residual set of the metrics on a given smooth manifold of dimension $3$.
Citation: |
Figure 1. A Standard T: The left hand side displays a curve $\alpha$ in ${T_p}M$, while the right hand side displays ${\exp _p} \circ \alpha$. Ⅰ, Ⅱ and Ⅳ are ACDCs, Ⅲ is the retort of Ⅱ, Ⅴ is the retort of Ⅳ, and Ⅵ is the retort of Ⅰ. Vertices 2 and 4 are $A_{3}$ joins, vertex 1 is a splitter, vertex 3 is a hit and vertex 5 is a reprise. There can be more than two segments between a splitter and its matching hit, and between a hit and its matching reprise.
Figure 4. CDCs in the half-cone of first conjugate points near an elliptic umbilic point, using the chart $(x_{1} ,x_{2} ) \rightarrow (x_{1} ,x_{2} ,- \sqrt{x_{1}^{2} +x_{2}^{2}} )$, for $r_{0} =(0,0,1)$. The distribution $D$ makes half turn as we make a full turn around $x_{1}^{2} +x_{2}^{2} =1$, spinning in the opposite direction.
W. Ambrose
, Parallel translation of riemannian curvature, Ann. of Math, 64 (1956)
, 337-363.
doi: 10.2307/1969978.![]() ![]() ![]() |
|
P. Angulo, Cut and Conjugate Points of the Exponential Map, with Applications Ph. D. Dissertation at Universidad Autónoma de Madrid, 2014, arXiv: 1411.3933
![]() |
|
P. Angulo
and L. Guijarro
, Balanced split sets and Hamilton-Jacobi equations, Calc. Var. Partial Differential Equations, 40 (2011)
, 223-252.
doi: 10.1007/s00526-010-0338-y.![]() ![]() ![]() |
|
R. A. Blumenthal
and J. J. Hebda
, The generalized Cartan-Ambrose-Hicks theorem, C. R. Acad. Sci. Paris Sér. I Math, 305 (1987)
, 647-651.
doi: 10.1007/BF00182117.![]() ![]() ![]() |
|
M. A. Buchner
, Stability of the cut locus in dimensions less than or equal to 6, Invent. Math., 43 (1977)
, 199-231.
![]() ![]() |
|
É. Cartan, Leçons sur la Géométrie des Espaces de Riemann (French) 2d ed. Gauthier-Villars, Paris, 1951.
![]() |
|
M. Castelpietra and L. Rifford, Regularity Properties of the Distance Functions to Conjugate
and Cut Loci for Viscosity Solutions of Hamilton-Jacobi Equations and Applications in Riemannian Geometry, ESAIM Control Optim. Calc. Var., 16 (2010), 695–718. arXiv: 0812.4107
(2008).
doi: 10.1051/cocv/2009020.![]() ![]() |
|
J. Cheeger and D. G. Ebin, Comparison Theorems in Riemannian Geometry Revised reprint of the 1975 original. AMS Chelsea Publishing, Providence, RI, 2008.
![]() |
|
P. Griffiths
and J. Wolf
, Complete maps and differentiable coverings, Michigan Math. J., 10 (1963)
, 253-255.
doi: 10.1307/mmj/1028998907.![]() ![]() ![]() |
|
B. Hambly
and T. Lyons
, Uniqueness for the signature of a path of bounded variation and the reduced path group, Ann. of Math., 171 (2010)
, 109-167.
doi: 10.4007/annals.2010.171.109.![]() ![]() ![]() |
|
J. J. Hebda
, Conjugate and cut loci and the Cartan-Ambrose-Hicks theorem, Indiana Univ. Math. J., 31 (1982)
, 17-26.
doi: 10.1512/iumj.1982.31.31003.![]() ![]() ![]() |
|
J. J. Hebda
, Parallel translation of curvature along geodesics, Trans. Amer. Math. Soc., 299 (1987)
, 559-572.
doi: 10.1090/S0002-9947-1987-0869221-6.![]() ![]() ![]() |
|
J. J. Hebda
, Metric structure of cut loci in surfaces and Ambrose's problem, J. Differential Geom., 40 (1994)
, 621-642.
doi: 10.4310/jdg/1214455780.![]() ![]() ![]() |
|
J. J. Hebda, Heterogeneous Riemannian manifolds, Int. J. Math. Math. Sci. (2010), Article ID 187232, 7 pp.
![]() |
|
N. Hicks
, A theorem on affine connexions, Illinois J. Math., 3 (1959)
, 242-254.
![]() ![]() |
|
M. Hirsch, Differential Topology Graduate Texts in Mathematics, 33. Springer-Verlag, New York, 1976.
![]() |
|
M. V. de Hoop
, S. F. Holman
, E. Iversen
, M. Lassas
and B. Ursin
, Recovering the isometry type of a Riemannian manifold from local boundary diffraction travel times, J. Math. Pures Appl., 103 (2015)
, 830-848.
doi: 10.1016/j.matpur.2014.09.003.![]() ![]() ![]() |
|
J. Itoh
, The length of a cut locus on a surface and Ambrose's problem, J. Differential Geom., 43 (1996)
, 642-651.
doi: 10.4310/jdg/1214458326.![]() ![]() ![]() |
|
J. Itoh
and M. Tanaka
, The Lipschitz continuity of the distance function to the cut locus, Trans. Amer. Math. Soc., 353 (2001)
, 21-40.
doi: 10.1090/S0002-9947-00-02564-2.![]() ![]() ![]() |
|
S. Janeczko
and T. Mostowski
, Relative generic singularities of the exponential map, Compositio Mathematica, 96 (1995)
, 345-370.
![]() ![]() |
|
F. Klok
, Generic singularities of the exponential map on Riemannian manifolds, Geom. Dedicata, 14 (1983)
, 317-342.
doi: 10.1007/BF00181572.![]() ![]() ![]() |
|
Sh. Kobayashi and K. Nomizu, Foundations of Differential Geometry. I Interscience Publishers, a division of John Wiley & Sons, New York-London, 1963.
![]() |
|
S. Kurilev
, M. Lassas
and G. Uhlmann
, Rigidity of broken geodesic flow and inverse problems, American Journal of Mathematics, 132 (2010)
, 529-562.
doi: 10.1353/ajm.0.0103.![]() ![]() ![]() |
|
B. O'Neill
, Construction of Riemannian coverings, Proc. Amer. Math. Soc., 19 (1968)
, 1278-1282.
doi: 10.1090/S0002-9939-1968-0232313-2.![]() ![]() ![]() |
|
V. Ozols
, Cut loci in Riemannian manifolds, Tôhoku Math. J., 26 (1974)
, 219-227.
doi: 10.2748/tmj/1178241180.![]() ![]() ![]() |
|
K. Pawel
and H. Reckziegel
, Affine submanifolds and the theorem of Cartan-Ambrose-Hicks, Kodai Math. J., 25 (2002)
, 341-356.
doi: 10.2996/kmj/1071674466.![]() ![]() ![]() |
|
A. Weinstein
, The generic conjugate locus, In Global Analysis (Proc. Sympos. Pure Math., Vol. XV, Berkeley, Calif., 1968), Amer. Math, Soc., Providence, R. I., (1970)
, 299-301.
![]() ![]() |
|
A. Weinstein
, The cut locus and conjugate locus of a riemannian manifold, Ann. of Math., 87 (1968)
, 29-41.
doi: 10.2307/1970592.![]() ![]() ![]() |
A Standard T: The left hand side displays a curve
Flow diagram for the linking curve algorithm
The distribution
CDCs in the half-cone of first conjugate points near an elliptic umbilic point, using the chart
A hyperbolic umbilic point.
This picture shows a neighborhood of an