-
Previous Article
Invariant curves of smooth quasi-periodic mappings
- DCDS Home
- This Issue
-
Next Article
Regularity of elliptic systems in divergence form with directional homogenization
Existence and properties of ancient solutions of the Yamabe flow
Department of Mathematics, National Chung Cheng University, 168 University Road, Min-Hsiung, Chia-Yi 621, Taiwan |
Let $n≥ 3$ and $m=\frac{n-2}{n+2}$. We construct $5$-parameters, $4$-parameters, and $3$-parameters ancient solutions of the equation $v_t=(v^m)_{xx}+v-v^m$, $v>0$, in $\mathbb{R}× (-∞, T)$ for some $T∈\mathbb{R}$. This equation arises in the study of Yamabe flow. We obtain various properties of the ancient solutions of this equation including exact decay rate of ancient solutions as $|x|\to∞$. We also prove that both the $3$-parameters ancient solution and the $4$-parameters ancient solution are singular limit solution of the $5$-parameters ancient solutions. We also prove the uniqueness of the $4$-parameters ancient solutions. As a consequence we prove that the $4$-parameters ancient solutions that we construct coincide with the $4$-parameters ancient solutions constructed by P. Daskalopoulos, M. del Pino, J. King, and N. Sesum in [
References:
[1] |
S. Angenent,
The zero set of a solution of a parabolic equation, J. Reine Angew. Math., 390 (1988), 79-96.
doi: 10.1515/crll.1988.390.79. |
[2] |
S. Brendle,
Convergence of the Yamabe flow for arbitrary energy, J. Differential Geom., 69 (2005), 217-278.
doi: 10.4310/jdg/1121449107. |
[3] |
S. Brendle,
Convergence of the Yamabe flow in dimension 6 and higher, Invent. Math., 170 (2007), 541-576.
doi: 10.1007/s00222-007-0074-x. |
[4] |
X. Y. Chen and P. Poláčik,
Asymptotic periodicity of positive solutions of a diffusion equation on a ball, J. Reine Angew. Math., 472 (1996), 17-51.
|
[5] |
B. E. J. Dahlberg and C. Kenig,
Nonnegative solutions of the generalized porous medium equations, Revista Matemática Iberoamericana, 2 (1986), 267-305.
|
[6] |
P. Daskalopoulos, J. King and N. Sesum, Extinction profile of complete non-compact solutions to the Yamabe flow,
arXiv: 1306. 0859v1. |
[7] |
P. Daskalopoulos, M. del Pino, J. King and N. Sesum,
Type Ⅰ ancient compact solutions of the Yamabe flow, Nonlinear Analysis, Theory, Methods and Applications, 137 (2016), 338-356.
doi: 10.1016/j.na.2015.12.005. |
[8] |
P. Daskalopoulos, M. del Pino, J. King and N. Sesum, New type Ⅰ ancient compact solutions of the Yamabe flow, arXiv: 1601. 05349v1. |
[9] |
F. Hamel and N. Nadirashvili,
Entire solutions of the KPP equation, Comm. Pure and Applied Math., 52 (1999), 1255-1276.
doi: 10.1002/(SICI)1097-0312(199910)52:10<1255::AID-CPA4>3.0.CO;2-W. |
[10] |
S. Y. Hsu,
Asymptotic behaviour of solutions of the equation $u_t=Δ\log u$ near the extinction time, Adv. Differential Equations, 8 (2003), 161-187.
|
[11] |
S. Y. Hsu,
Singular limit and exact decay rate of a nonlinear elliptic equation, Nonlinear Analysis TMA, 75 (2012), 3443-3455.
doi: 10.1016/j.na.2012.01.009. |
[12] |
S. Y. Hsu,
Some properties of the Yamabe soliton and the related nonlinear elliptic equation, Calc. Var. Partial Differential Equations, 49 (2014), 307-321.
doi: 10.1007/s00526-012-0583-3. |
[13] |
K. M. Hui,
Existence of solutions of the equation $u_t=Δ\log u$, Nonlinear Analysis TMA, 37 (1999), 875-914.
doi: 10.1016/S0362-546X(98)00081-9. |
[14] |
O. A. Ladyzenskaya, V. A. Solonnikov and N. N. Uraltceva,
Linear and Quasilinear Equations of Parabolic Type, Transl. Math. Mono. , Amer. Math. Soc. , Providence, R. I. , USA, 1968. |
[15] |
H. Matano,
Nonincrease of the lap number of a solution for one dimensional semi-linear
parabolic, equations, J. Fac. Sci. Univ. Tokyo, Sec., 29 (1982), 401-441.
|
[16] |
A. de Pablo and J. L. Vazquez,
Travelling waves and finite propagation in a reaction-diffusion equation, J. Differential Equations, 93 (1991), 19-61.
doi: 10.1016/0022-0396(91)90021-Z. |
[17] |
M. del Pino and M. Sáez,
On the extinction profile for solutions of $u_t=Δ u^{(N-2)/(N+2)}$, Indiana Univ. Math. J., 50 (2001), 611-628.
doi: 10.1512/iumj.2001.50.1876. |
[18] |
A. A. Samarskii, V. A. Galaktionov, S. P. Kurdyumov and A. P. Mikhailov,
Blow-up in Quasilinear Parabolic Equations Walter de Gruyter, Berlin, 1995.
doi: 10.1515/9783110889864. |
show all references
References:
[1] |
S. Angenent,
The zero set of a solution of a parabolic equation, J. Reine Angew. Math., 390 (1988), 79-96.
doi: 10.1515/crll.1988.390.79. |
[2] |
S. Brendle,
Convergence of the Yamabe flow for arbitrary energy, J. Differential Geom., 69 (2005), 217-278.
doi: 10.4310/jdg/1121449107. |
[3] |
S. Brendle,
Convergence of the Yamabe flow in dimension 6 and higher, Invent. Math., 170 (2007), 541-576.
doi: 10.1007/s00222-007-0074-x. |
[4] |
X. Y. Chen and P. Poláčik,
Asymptotic periodicity of positive solutions of a diffusion equation on a ball, J. Reine Angew. Math., 472 (1996), 17-51.
|
[5] |
B. E. J. Dahlberg and C. Kenig,
Nonnegative solutions of the generalized porous medium equations, Revista Matemática Iberoamericana, 2 (1986), 267-305.
|
[6] |
P. Daskalopoulos, J. King and N. Sesum, Extinction profile of complete non-compact solutions to the Yamabe flow,
arXiv: 1306. 0859v1. |
[7] |
P. Daskalopoulos, M. del Pino, J. King and N. Sesum,
Type Ⅰ ancient compact solutions of the Yamabe flow, Nonlinear Analysis, Theory, Methods and Applications, 137 (2016), 338-356.
doi: 10.1016/j.na.2015.12.005. |
[8] |
P. Daskalopoulos, M. del Pino, J. King and N. Sesum, New type Ⅰ ancient compact solutions of the Yamabe flow, arXiv: 1601. 05349v1. |
[9] |
F. Hamel and N. Nadirashvili,
Entire solutions of the KPP equation, Comm. Pure and Applied Math., 52 (1999), 1255-1276.
doi: 10.1002/(SICI)1097-0312(199910)52:10<1255::AID-CPA4>3.0.CO;2-W. |
[10] |
S. Y. Hsu,
Asymptotic behaviour of solutions of the equation $u_t=Δ\log u$ near the extinction time, Adv. Differential Equations, 8 (2003), 161-187.
|
[11] |
S. Y. Hsu,
Singular limit and exact decay rate of a nonlinear elliptic equation, Nonlinear Analysis TMA, 75 (2012), 3443-3455.
doi: 10.1016/j.na.2012.01.009. |
[12] |
S. Y. Hsu,
Some properties of the Yamabe soliton and the related nonlinear elliptic equation, Calc. Var. Partial Differential Equations, 49 (2014), 307-321.
doi: 10.1007/s00526-012-0583-3. |
[13] |
K. M. Hui,
Existence of solutions of the equation $u_t=Δ\log u$, Nonlinear Analysis TMA, 37 (1999), 875-914.
doi: 10.1016/S0362-546X(98)00081-9. |
[14] |
O. A. Ladyzenskaya, V. A. Solonnikov and N. N. Uraltceva,
Linear and Quasilinear Equations of Parabolic Type, Transl. Math. Mono. , Amer. Math. Soc. , Providence, R. I. , USA, 1968. |
[15] |
H. Matano,
Nonincrease of the lap number of a solution for one dimensional semi-linear
parabolic, equations, J. Fac. Sci. Univ. Tokyo, Sec., 29 (1982), 401-441.
|
[16] |
A. de Pablo and J. L. Vazquez,
Travelling waves and finite propagation in a reaction-diffusion equation, J. Differential Equations, 93 (1991), 19-61.
doi: 10.1016/0022-0396(91)90021-Z. |
[17] |
M. del Pino and M. Sáez,
On the extinction profile for solutions of $u_t=Δ u^{(N-2)/(N+2)}$, Indiana Univ. Math. J., 50 (2001), 611-628.
doi: 10.1512/iumj.2001.50.1876. |
[18] |
A. A. Samarskii, V. A. Galaktionov, S. P. Kurdyumov and A. P. Mikhailov,
Blow-up in Quasilinear Parabolic Equations Walter de Gruyter, Berlin, 1995.
doi: 10.1515/9783110889864. |
[1] |
Fouad Hadj Selem, Hiroaki Kikuchi, Juncheng Wei. Existence and uniqueness of singular solution to stationary Schrödinger equation with supercritical nonlinearity. Discrete and Continuous Dynamical Systems, 2013, 33 (10) : 4613-4626. doi: 10.3934/dcds.2013.33.4613 |
[2] |
Luiz F. O. Faria. Existence and uniqueness of positive solutions for singular biharmonic elliptic systems. Conference Publications, 2015, 2015 (special) : 400-408. doi: 10.3934/proc.2015.0400 |
[3] |
Yen-Lin Wu, Zhi-You Chen, Jann-Long Chern, Y. Kabeya. Existence and uniqueness of singular solutions for elliptic equation on the hyperbolic space. Communications on Pure and Applied Analysis, 2014, 13 (2) : 949-960. doi: 10.3934/cpaa.2014.13.949 |
[4] |
Taebeom Kim, Sunčica Čanić, Giovanna Guidoboni. Existence and uniqueness of a solution to a three-dimensional axially symmetric Biot problem arising in modeling blood flow. Communications on Pure and Applied Analysis, 2010, 9 (4) : 839-865. doi: 10.3934/cpaa.2010.9.839 |
[5] |
Xing Wu, Keqin Su. Global existence and optimal decay rate of solutions to hyperbolic chemotaxis system in Besov spaces. Discrete and Continuous Dynamical Systems - B, 2021, 26 (12) : 6057-6068. doi: 10.3934/dcdsb.2021002 |
[6] |
L. Brandolini, M. Rigoli and A. G. Setti. On the existence of positive solutions of Yamabe-type equations on the Heisenberg group. Electronic Research Announcements, 1996, 2: 101-107. |
[7] |
Yongming Liu, Lei Yao. Global solution and decay rate for a reduced gravity two and a half layer model. Discrete and Continuous Dynamical Systems - B, 2019, 24 (6) : 2613-2638. doi: 10.3934/dcdsb.2018267 |
[8] |
Yoshikazu Giga, Yukihiro Seki, Noriaki Umeda. On decay rate of quenching profile at space infinity for axisymmetric mean curvature flow. Discrete and Continuous Dynamical Systems, 2011, 29 (4) : 1463-1470. doi: 10.3934/dcds.2011.29.1463 |
[9] |
Rui Peng, Xianfa Song, Lei Wei. Existence, nonexistence and uniqueness of positive stationary solutions of a singular Gierer-Meinhardt system. Discrete and Continuous Dynamical Systems, 2017, 37 (8) : 4489-4505. doi: 10.3934/dcds.2017192 |
[10] |
Dominique Blanchard, Nicolas Bruyère, Olivier Guibé. Existence and uniqueness of the solution of a Boussinesq system with nonlinear dissipation. Communications on Pure and Applied Analysis, 2013, 12 (5) : 2213-2227. doi: 10.3934/cpaa.2013.12.2213 |
[11] |
G. C. Yang, K. Q. Lan. Systems of singular integral equations and applications to existence of reversed flow solutions of Falkner-Skan equations. Communications on Pure and Applied Analysis, 2013, 12 (6) : 2465-2495. doi: 10.3934/cpaa.2013.12.2465 |
[12] |
Hongjun Gao, Šárka Nečasová, Tong Tang. On weak-strong uniqueness and singular limit for the compressible Primitive Equations. Discrete and Continuous Dynamical Systems, 2020, 40 (7) : 4287-4305. doi: 10.3934/dcds.2020181 |
[13] |
Maria Assunta Pozio, Fabio Punzo, Alberto Tesei. Uniqueness and nonuniqueness of solutions to parabolic problems with singular coefficients. Discrete and Continuous Dynamical Systems, 2011, 30 (3) : 891-916. doi: 10.3934/dcds.2011.30.891 |
[14] |
Jann-Long Chern, Yong-Li Tang, Chuan-Jen Chyan, Yi-Jung Chen. On the uniqueness of singular solutions for a Hardy-Sobolev equation. Conference Publications, 2013, 2013 (special) : 123-128. doi: 10.3934/proc.2013.2013.123 |
[15] |
Maria Assunta Pozio, Alberto Tesei. On the uniqueness of bounded solutions to singular parabolic problems. Discrete and Continuous Dynamical Systems, 2005, 13 (1) : 117-137. doi: 10.3934/dcds.2005.13.117 |
[16] |
Peter Poláčik, Pavol Quittner. Entire and ancient solutions of a supercritical semilinear heat equation. Discrete and Continuous Dynamical Systems, 2021, 41 (1) : 413-438. doi: 10.3934/dcds.2020136 |
[17] |
Yanxia Niu, Yinxia Wang, Qingnian Zhang. Decay rate of global solutions to three dimensional generalized MHD system. Evolution Equations and Control Theory, 2021, 10 (2) : 249-258. doi: 10.3934/eect.2020064 |
[18] |
Fangfang Jiang, Junping Shi, Qing-guo Wang, Jitao Sun. On the existence and uniqueness of a limit cycle for a Liénard system with a discontinuity line. Communications on Pure and Applied Analysis, 2016, 15 (6) : 2509-2526. doi: 10.3934/cpaa.2016047 |
[19] |
Patricia J.Y. Wong. Existence of solutions to singular integral equations. Conference Publications, 2009, 2009 (Special) : 818-827. doi: 10.3934/proc.2009.2009.818 |
[20] |
Sigurd Angenent. Formal asymptotic expansions for symmetric ancient ovals in mean curvature flow. Networks and Heterogeneous Media, 2013, 8 (1) : 1-8. doi: 10.3934/nhm.2013.8.1 |
2020 Impact Factor: 1.392
Tools
Metrics
Other articles
by authors
[Back to Top]