-
Previous Article
Equidistribution with an error rate and Diophantine approximation over a local field of positive characteristic
- DCDS Home
- This Issue
-
Next Article
Invariant curves of smooth quasi-periodic mappings
An application of lattice points counting to shrinking target problems
Brandeis University, Waltham MA, 02454, USA |
We apply lattice points counting results to solve a shrinking target problem in the setting of discrete time geodesic flows on hyperbolic manifolds of finite volume.
References:
[1] |
J. Athreya,
Logarithm laws and shrinking target properties, Proc. Indian Acad. (Math. Sci.), 119 (2009), 541-557.
doi: 10.1007/s12044-009-0044-x. |
[2] |
_____, Cusp excursions on parameter spaces, J. Lond. Math. Soc. , 87 (2013), 741–765 |
[3] |
Y. Benoist and H. Oh,
Effective equidistribution of $S$-integral points on symmetric varieties, Annales de L'Institut Fourier, 62 (2012), 1889-1942.
doi: 10.5802/aif.2738. |
[4] |
N. Chernov and D. Kleinbock,
Dynamical Borel-Cantelli lemmas for Gibbs measures, Israel J. Math., 122 (2001), 1-27.
doi: 10.1007/BF02809888. |
[5] |
D. Dolgopyat,
Limit theorems for partially hyperbolic systems, Trans. Amer. Math. Soc., 356 (2004), 1637-1689.
doi: 10.1090/S0002-9947-03-03335-X. |
[6] |
S. Galatolo,
Dimension and hitting time in rapidly mixing systems, Math. Res. Lett., 14 (2007), 797-805.
doi: 10.4310/MRL.2007.v14.n5.a8. |
[7] |
A. Gorodnik and A. Nevo,
Counting lattice points, J. Reine Angew. Math., 663 (2012), 127-176.
doi: 10.1515/CRELLE.2011.096. |
[8] |
A. Gorodnik and N. Shah,
Khinchin's theorem for approximation by integral points on quadratic varieties, Math. Ann., 350 (2011), 357-380.
doi: 10.1007/s00208-010-0561-z. |
[9] |
N. Haydn, M. Nicol, T. Persson and S. Vaienti,
A note on Borel-Cantelli lemmas for non-uniformly hyperbolic dynamical systems, Ergodic Theory Dynam. Systems, 33 (2013), 475-498.
doi: 10.1017/S014338571100099X. |
[10] |
H. Huber,
Über eine neue Klasse automorpher Functionen und eine Gitterpunktproblem in der hyperbolischen Ebene, Comment. Math. Helv., 30 (1956), 20-62.
doi: 10.1007/BF02564331. |
[11] |
D. Y. Kleinbock and G. A. Margulis,
Logarithm laws for flows on homogeneous spaces, Invent. Math., 138 (1999), 451-494.
doi: 10.1007/s002220050350. |
[12] |
P. Lax and R. Phillips,
The asymptotic distribution of lattice points in Euclidean and Non-Euclidean spaces, J. Funct. Anal., 46 (1982), 280-350.
doi: 10.1016/0022-1236(82)90050-7. |
[13] |
F. Maucourant,
Dynamical Borel-Cantelli lemma for hyperbolic spaces, Israel J. Math., 152 (2006), 143-155.
doi: 10.1007/BF02771980. |
[14] |
C. C. Moore, Exponential decay of correlation coefficients for geodesic flows, in: Group representations, ergodic theory, operator algebras, and mathematical physics (Berkeley, CA, 1984), 163–181, Math. Sci. Res. Inst. Publ. 6, Springer, New York, 1987.
doi: 10.1007/978-1-4612-4722-7_6. |
[15] |
W. Philipp,
Some metrical theorems in number theory, Pacific J. Math., 20 (1967), 109-127.
doi: 10.2140/pjm.1967.20.109. |
[16] |
M. Ratner,
The rate of mixing for geodesic and horocycle flows, Ergodic Theory Dynam. Systems, 7 (1987), 267-288.
doi: 10.1017/S0143385700004004. |
[17] |
D. Sullivan,
Disjoint spheres, approximation by quadratic numbers and the logarithm law for geodesics, Acta Math., 149 (1982), 215-237.
doi: 10.1007/BF02392354. |
show all references
References:
[1] |
J. Athreya,
Logarithm laws and shrinking target properties, Proc. Indian Acad. (Math. Sci.), 119 (2009), 541-557.
doi: 10.1007/s12044-009-0044-x. |
[2] |
_____, Cusp excursions on parameter spaces, J. Lond. Math. Soc. , 87 (2013), 741–765 |
[3] |
Y. Benoist and H. Oh,
Effective equidistribution of $S$-integral points on symmetric varieties, Annales de L'Institut Fourier, 62 (2012), 1889-1942.
doi: 10.5802/aif.2738. |
[4] |
N. Chernov and D. Kleinbock,
Dynamical Borel-Cantelli lemmas for Gibbs measures, Israel J. Math., 122 (2001), 1-27.
doi: 10.1007/BF02809888. |
[5] |
D. Dolgopyat,
Limit theorems for partially hyperbolic systems, Trans. Amer. Math. Soc., 356 (2004), 1637-1689.
doi: 10.1090/S0002-9947-03-03335-X. |
[6] |
S. Galatolo,
Dimension and hitting time in rapidly mixing systems, Math. Res. Lett., 14 (2007), 797-805.
doi: 10.4310/MRL.2007.v14.n5.a8. |
[7] |
A. Gorodnik and A. Nevo,
Counting lattice points, J. Reine Angew. Math., 663 (2012), 127-176.
doi: 10.1515/CRELLE.2011.096. |
[8] |
A. Gorodnik and N. Shah,
Khinchin's theorem for approximation by integral points on quadratic varieties, Math. Ann., 350 (2011), 357-380.
doi: 10.1007/s00208-010-0561-z. |
[9] |
N. Haydn, M. Nicol, T. Persson and S. Vaienti,
A note on Borel-Cantelli lemmas for non-uniformly hyperbolic dynamical systems, Ergodic Theory Dynam. Systems, 33 (2013), 475-498.
doi: 10.1017/S014338571100099X. |
[10] |
H. Huber,
Über eine neue Klasse automorpher Functionen und eine Gitterpunktproblem in der hyperbolischen Ebene, Comment. Math. Helv., 30 (1956), 20-62.
doi: 10.1007/BF02564331. |
[11] |
D. Y. Kleinbock and G. A. Margulis,
Logarithm laws for flows on homogeneous spaces, Invent. Math., 138 (1999), 451-494.
doi: 10.1007/s002220050350. |
[12] |
P. Lax and R. Phillips,
The asymptotic distribution of lattice points in Euclidean and Non-Euclidean spaces, J. Funct. Anal., 46 (1982), 280-350.
doi: 10.1016/0022-1236(82)90050-7. |
[13] |
F. Maucourant,
Dynamical Borel-Cantelli lemma for hyperbolic spaces, Israel J. Math., 152 (2006), 143-155.
doi: 10.1007/BF02771980. |
[14] |
C. C. Moore, Exponential decay of correlation coefficients for geodesic flows, in: Group representations, ergodic theory, operator algebras, and mathematical physics (Berkeley, CA, 1984), 163–181, Math. Sci. Res. Inst. Publ. 6, Springer, New York, 1987.
doi: 10.1007/978-1-4612-4722-7_6. |
[15] |
W. Philipp,
Some metrical theorems in number theory, Pacific J. Math., 20 (1967), 109-127.
doi: 10.2140/pjm.1967.20.109. |
[16] |
M. Ratner,
The rate of mixing for geodesic and horocycle flows, Ergodic Theory Dynam. Systems, 7 (1987), 267-288.
doi: 10.1017/S0143385700004004. |
[17] |
D. Sullivan,
Disjoint spheres, approximation by quadratic numbers and the logarithm law for geodesics, Acta Math., 149 (1982), 215-237.
doi: 10.1007/BF02392354. |
[1] |
Dubi Kelmer, Hee Oh. Shrinking targets for the geodesic flow on geometrically finite hyperbolic manifolds. Journal of Modern Dynamics, 2021, 17: 401-434. doi: 10.3934/jmd.2021014 |
[2] |
Alexander Gorodnik, Frédéric Paulin. Counting orbits of integral points in families of affine homogeneous varieties and diagonal flows. Journal of Modern Dynamics, 2014, 8 (1) : 25-59. doi: 10.3934/jmd.2014.8.25 |
[3] |
Jimmy Tseng. On circle rotations and the shrinking target properties. Discrete and Continuous Dynamical Systems, 2008, 20 (4) : 1111-1122. doi: 10.3934/dcds.2008.20.1111 |
[4] |
Rafael O. Ruggiero. Shadowing of geodesics, weak stability of the geodesic flow and global hyperbolic geometry. Discrete and Continuous Dynamical Systems, 2006, 14 (2) : 365-383. doi: 10.3934/dcds.2006.14.365 |
[5] |
Jon Chaika, David Constantine. A quantitative shrinking target result on Sturmian sequences for rotations. Discrete and Continuous Dynamical Systems, 2018, 38 (10) : 5189-5204. doi: 10.3934/dcds.2018229 |
[6] |
Shrey Sanadhya. A shrinking target theorem for ergodic transformations of the unit interval. Discrete and Continuous Dynamical Systems, 2022 doi: 10.3934/dcds.2022042 |
[7] |
Katrin Gelfert. Non-hyperbolic behavior of geodesic flows of rank 1 surfaces. Discrete and Continuous Dynamical Systems, 2019, 39 (1) : 521-551. doi: 10.3934/dcds.2019022 |
[8] |
Artur O. Lopes, Vladimir A. Rosas, Rafael O. Ruggiero. Cohomology and subcohomology problems for expansive, non Anosov geodesic flows. Discrete and Continuous Dynamical Systems, 2007, 17 (2) : 403-422. doi: 10.3934/dcds.2007.17.403 |
[9] |
Fei Liu, Fang Wang, Weisheng Wu. On the Patterson-Sullivan measure for geodesic flows on rank 1 manifolds without focal points. Discrete and Continuous Dynamical Systems, 2020, 40 (3) : 1517-1554. doi: 10.3934/dcds.2020085 |
[10] |
Fei Liu, Xiaokai Liu, Fang Wang. On the mixing and Bernoulli properties for geodesic flows on rank 1 manifolds without focal points. Discrete and Continuous Dynamical Systems, 2021, 41 (10) : 4791-4804. doi: 10.3934/dcds.2021057 |
[11] |
Sujay Jayakar, Robert S. Strichartz. Average number of lattice points in a disk. Communications on Pure and Applied Analysis, 2016, 15 (1) : 1-8. doi: 10.3934/cpaa.2016.15.1 |
[12] |
Hyung-Chun Lee. Efficient computations for linear feedback control problems for target velocity matching of Navier-Stokes flows via POD and LSTM-ROM. Electronic Research Archive, 2021, 29 (3) : 2533-2552. doi: 10.3934/era.2020128 |
[13] |
Antoine Benoit. Weak well-posedness of hyperbolic boundary value problems in a strip: when instabilities do not reflect the geometry. Communications on Pure and Applied Analysis, 2020, 19 (12) : 5475-5486. doi: 10.3934/cpaa.2020248 |
[14] |
Hiroshi Isozaki. Inverse boundary value problems in the horosphere - A link between hyperbolic geometry and electrical impedance tomography. Inverse Problems and Imaging, 2007, 1 (1) : 107-134. doi: 10.3934/ipi.2007.1.107 |
[15] |
Colin J. Cotter, Darryl D. Holm. Geodesic boundary value problems with symmetry. Journal of Geometric Mechanics, 2010, 2 (1) : 51-68. doi: 10.3934/jgm.2010.2.51 |
[16] |
Jan Philipp Schröder. Ergodicity and topological entropy of geodesic flows on surfaces. Journal of Modern Dynamics, 2015, 9: 147-167. doi: 10.3934/jmd.2015.9.147 |
[17] |
Keith Burns, Katrin Gelfert. Lyapunov spectrum for geodesic flows of rank 1 surfaces. Discrete and Continuous Dynamical Systems, 2014, 34 (5) : 1841-1872. doi: 10.3934/dcds.2014.34.1841 |
[18] |
Daniel Visscher. A new proof of Franks' lemma for geodesic flows. Discrete and Continuous Dynamical Systems, 2014, 34 (11) : 4875-4895. doi: 10.3934/dcds.2014.34.4875 |
[19] |
Dubi Kelmer. Approximation of points in the plane by generic lattice orbits. Journal of Modern Dynamics, 2017, 11: 143-153. doi: 10.3934/jmd.2017007 |
[20] |
Gabriel Soler López. Accumulation points of flows on the Klein bottle. Discrete and Continuous Dynamical Systems, 2003, 9 (2) : 497-503. doi: 10.3934/dcds.2003.9.497 |
2020 Impact Factor: 1.392
Tools
Metrics
Other articles
by authors
[Back to Top]