For a local field K of formal Laurent series and its ring Z of polynomials, we prove a pointwise equidistribution with an error rate of each H-orbit in SL(d, K)/SL(d, Z) for a certain proper subgroup H of a horospherical group, extending a work of Kleinbock-Shi-Weiss.
We obtain an asymptotic formula for the number of integral solutions to the Diophantine inequalities with weights, generalizing a result of Dodson-Kristensen-Levesley. This result enables us to show pointwise equidistribution for unbounded functions of class Cα.
Citation: |
J. Athreya
, A. Ghosh
and A. Prasad
, Ultrametric logarithm laws Ⅱ, Monatsh Math., 167 (2012)
, 333-356.
doi: 10.1007/s00605-012-0376-y.![]() ![]() |
|
J. Athreya
, A. Parrish
and J. Tseng
, Ergodic theory and Diophantine approximation for linear forms and translation surfaces and linear forms, Nonlinearity, 29 (2016)
, 2173-2190.
doi: 10.1088/0951-7715/29/8/2173.![]() ![]() ![]() |
|
M. Dodson
, S. Kristensen
and J. Levesley
, A quantitative Khintchine-Groshev type theorem over a field of formal series, Indag. Math. (N.S), 16 (2005)
, 171-177.
doi: 10.1016/S0019-3577(05)80020-5.![]() ![]() ![]() |
|
M. Einsiedler, G. Margulis, A. Mohammadi and A. Venkatesh, Effective equidistribution and property (τ), preprint, arXiv: 1503.05884.
![]() |
|
A. Eskin
, G. Margulis
and S. Mozes
, Upper bounds and asymptotics in a quantitative version of the Oppenheim conjecture, Annals of Mathematics, 147 (1998)
, 93-141.
doi: 10.2307/120984.![]() ![]() ![]() |
|
A. Ghosh
, Metric Diophantine approximation over a local field of positive characteristic, J. Number Theory, 124 (2007)
, 454-469.
doi: 10.1016/j.jnt.2006.10.009.![]() ![]() ![]() |
|
D. Kleinbock and G. Margulis, On effective equidistribution of expanding translates of certain orbits in the space of lattices, in Number Theory, Analysis and Geometry, Springer, New York, 2012,385–396.
![]() |
|
D. Kleinbock
, R. Shi
and B. Weiss
, Pointwise equidistribution with an error rate and with respect to unbounded functions, Math. Ann., 367 (2017)
, 857-879.
doi: 10.1007/s00208-016-1404-3.![]() ![]() ![]() |
|
D. Kleinbock
, R. Shi
and G. Tomanov
, s-adic version of Minkowskis geometry of numbers and Mahlers compactness criterion, J. Number Theory, 174 (2017)
, 150-163.
doi: 10.1016/j.jnt.2016.10.016.![]() ![]() ![]() |
|
D. Kleinbock
and G. Tomanov
, Flows on s-arithmetic homogeneous spaces and applications to metric Diophantine approximation, Coom. Math. Helv., 82 (2007)
, 519-581.
doi: 10.4171/CMH/102.![]() ![]() ![]() |
|
A. Mohammadi
, Measures invariant under horospherical subgroups in positive characteristic, J. Mod. Dynamics, 5 (2011)
, 237-254.
doi: 10.3934/jmd.2011.5.237.![]() ![]() ![]() |
|
M. Morishita, A mean value theorem in adele geometry, Algebraic number theory and Fermat’s problem, Sūrikaisekikenkyūsho Kkyōroku, (Japanese) (1995), 1-11.
![]() |
|
H. Oh
, Uniform pointwise bounds for matrix coefficients of unitary representations and applications to Kazhdan constants, Duke Math. J., 113 (2002)
, 133-192.
doi: 10.1215/S0012-7094-02-11314-3.![]() ![]() ![]() |
|
M. Rosen, Number Theory in Function Fields, Springer-Verlag, New York, 2002.
![]() |
|
R. Rühr, Some Applications of Effective Unipotent Dynamics, Ph. D. Thesis, ETH Zurich, 2015.
![]() |
|
N. Shah
, Limit distributions of expanding translates of certain orbits on homogeneous spaces, Proc. Indian Acad. Sci. (Math. Sci.), 106 (1996)
, 105-125.
doi: 10.1007/BF02837164.![]() ![]() ![]() |
|
R. Shi, Expanding cone and applications to homogeneous dynamics, preprint, arXiv: 1510.05256.
![]() |
|
C. Siegel
, Amean value theorem in geometry of numbers, Annals of Mathematics, 46 (1945)
, 340-347.
doi: 10.2307/1969027.![]() ![]() ![]() |
|
V. Sprindzuk, Metric Theory of Diophantine Approximations, V. H. Winston & Sons, Washington, DC, 1979.
![]() |
|
G. Tomanov
, Orbits on homogeneous spaces of arithmetic origin and approximations, Adv. studies in Pure Math., 26 (2000)
, 265-297.
![]() ![]() |