
-
Previous Article
Absolutely continuous spectrum for parabolic flows/maps
- DCDS Home
- This Issue
-
Next Article
Chaotic behavior of the P-adic Potts-Bethe mapping
On C1, β density of metrics without invariant graphs
1. | Departamento de Geometria e Representação Gráfica, IME-UERJ, R. São Francisco Xavier, 524, Rio de Janeiro, 20550-900, Brazil |
2. | Departamento de Matemática PUC-Rio, Rua Marquês de São Vicente 225, Rio de Janeiro 22543-900, Brazil, and Université d'Aix Marseille, France |
We show that given any $C^{\infty}$ Riemannian structure $(T^{2},g)$ in the two torus, $\epsilon >0$ and $\beta \in (0,\frac{1}{3})$, there exists a $C^{\infty}$ Riemannian metric $\bar{g}$ with no continuous Lagrangian invariant graphs that is $\epsilon$-$C^{1,\beta}$ close to $g$. The main idea of the proof is inspired in the work of V. Bangert who introduced caps from smoothed cone type $C^{1}$ small perturbations of metrics with non-positive curvature to get conjugate points. Our new contribution to the subject is to show that positive curvature cone type small perturbations are ``less singular" than non-positive curvature cone type perturbations. Positive curvature geometry allows us to get better estimates for the variation of the $C^{1}$ norm of the singular cone in a neighborhood of its vertex.
References:
[1] |
V. Bangert,
Mather sets for twist maps and geodesics on tori, Dynamics Reported, 1 (1988), 1-56.
|
[2] |
M. R. Herman,
Sur les courbes invariantes par les difféomorphismes de lánneau Vol. 1, Astérisque, (1983), 103-104.
|
[3] |
M. R. Herman, Non existence of Lagrangian graphs, available online in Archive Michel Herman: http://www.college-de-france.fr, (1990), 1–5. |
[4] |
R. S. Mackay,
A criterion for non-existence of invariant tori for Hamiltonian systems, Physica D: Nonlinear Phenomena, 36 (1989), 64-82.
doi: 10.1016/0167-2789(89)90248-0. |
[5] |
J. N. Mather,
Destruction of invariant circles, Ergodic Theory Dynam. Systems, 8 (1988), 199-214.
doi: 10.1017/S0143385700009421. |
[6] |
M. Morse,
The Calculus of Variations in the Large American Mathematical Society, Providence, RI, 1996.
doi: 10.1090/coll/018. |
[7] |
G. Paternain,
Geodesic Flows Progress in Mathematics, 180, Birkhäuser Boston, 1999.
doi: 10.1007/978-1-4612-1600-1. |
[8] |
R. O. Ruggiero,
On the creation of conjugate points, Mathematische Zeitschrift, 208 (1991), 41-55.
doi: 10.1007/BF02571508. |
[9] |
R. O. Ruggiero,
The set of smooth metrics in the torus without continuous invariant graphs is open and dense in the C1 topology, Bulletin of the Brazilian Mathematical Society, 35 (2004), 377-385.
doi: 10.1007/s00574-004-0020-0. |
[10] |
R. O. Ruggiero,
On the density of mechanical Lagrangians in T2 without continuous invariant graphs in all supercritical energy levels, Discrete and Continuous Dynamical Systems. Series B, 10 (2008), 661-679.
doi: 10.3934/dcdsb.2008.10.661. |
[11] |
F. Takens,
A C1 counterexample to Moser's twist theorem, Nederl. Akad. Wetensch. Proc. Ser. A 74=Indag. Math., 33 (1971), 379-386.
|
show all references
References:
[1] |
V. Bangert,
Mather sets for twist maps and geodesics on tori, Dynamics Reported, 1 (1988), 1-56.
|
[2] |
M. R. Herman,
Sur les courbes invariantes par les difféomorphismes de lánneau Vol. 1, Astérisque, (1983), 103-104.
|
[3] |
M. R. Herman, Non existence of Lagrangian graphs, available online in Archive Michel Herman: http://www.college-de-france.fr, (1990), 1–5. |
[4] |
R. S. Mackay,
A criterion for non-existence of invariant tori for Hamiltonian systems, Physica D: Nonlinear Phenomena, 36 (1989), 64-82.
doi: 10.1016/0167-2789(89)90248-0. |
[5] |
J. N. Mather,
Destruction of invariant circles, Ergodic Theory Dynam. Systems, 8 (1988), 199-214.
doi: 10.1017/S0143385700009421. |
[6] |
M. Morse,
The Calculus of Variations in the Large American Mathematical Society, Providence, RI, 1996.
doi: 10.1090/coll/018. |
[7] |
G. Paternain,
Geodesic Flows Progress in Mathematics, 180, Birkhäuser Boston, 1999.
doi: 10.1007/978-1-4612-1600-1. |
[8] |
R. O. Ruggiero,
On the creation of conjugate points, Mathematische Zeitschrift, 208 (1991), 41-55.
doi: 10.1007/BF02571508. |
[9] |
R. O. Ruggiero,
The set of smooth metrics in the torus without continuous invariant graphs is open and dense in the C1 topology, Bulletin of the Brazilian Mathematical Society, 35 (2004), 377-385.
doi: 10.1007/s00574-004-0020-0. |
[10] |
R. O. Ruggiero,
On the density of mechanical Lagrangians in T2 without continuous invariant graphs in all supercritical energy levels, Discrete and Continuous Dynamical Systems. Series B, 10 (2008), 661-679.
doi: 10.3934/dcdsb.2008.10.661. |
[11] |
F. Takens,
A C1 counterexample to Moser's twist theorem, Nederl. Akad. Wetensch. Proc. Ser. A 74=Indag. Math., 33 (1971), 379-386.
|

[1] |
Fei Liu, Fang Wang, Weisheng Wu. On the Patterson-Sullivan measure for geodesic flows on rank 1 manifolds without focal points. Discrete and Continuous Dynamical Systems, 2020, 40 (3) : 1517-1554. doi: 10.3934/dcds.2020085 |
[2] |
Fei Liu, Xiaokai Liu, Fang Wang. On the mixing and Bernoulli properties for geodesic flows on rank 1 manifolds without focal points. Discrete and Continuous Dynamical Systems, 2021, 41 (10) : 4791-4804. doi: 10.3934/dcds.2021057 |
[3] |
Yuri B. Suris. Variational formulation of commuting Hamiltonian flows: Multi-time Lagrangian 1-forms. Journal of Geometric Mechanics, 2013, 5 (3) : 365-379. doi: 10.3934/jgm.2013.5.365 |
[4] |
Zhihong Xia. Homoclinic points and intersections of Lagrangian submanifold. Discrete and Continuous Dynamical Systems, 2000, 6 (1) : 243-253. doi: 10.3934/dcds.2000.6.243 |
[5] |
Artur M. C. Brito da Cruz, Natália Martins, Delfim F. M. Torres. Hahn's symmetric quantum variational calculus. Numerical Algebra, Control and Optimization, 2013, 3 (1) : 77-94. doi: 10.3934/naco.2013.3.77 |
[6] |
Eduardo Martínez. Higher-order variational calculus on Lie algebroids. Journal of Geometric Mechanics, 2015, 7 (1) : 81-108. doi: 10.3934/jgm.2015.7.81 |
[7] |
Viviana Alejandra Díaz, David Martín de Diego. Generalized variational calculus for continuous and discrete mechanical systems. Journal of Geometric Mechanics, 2018, 10 (4) : 373-410. doi: 10.3934/jgm.2018014 |
[8] |
Jan Philipp Schröder. Ergodicity and topological entropy of geodesic flows on surfaces. Journal of Modern Dynamics, 2015, 9: 147-167. doi: 10.3934/jmd.2015.9.147 |
[9] |
Keith Burns, Katrin Gelfert. Lyapunov spectrum for geodesic flows of rank 1 surfaces. Discrete and Continuous Dynamical Systems, 2014, 34 (5) : 1841-1872. doi: 10.3934/dcds.2014.34.1841 |
[10] |
Daniel Visscher. A new proof of Franks' lemma for geodesic flows. Discrete and Continuous Dynamical Systems, 2014, 34 (11) : 4875-4895. doi: 10.3934/dcds.2014.34.4875 |
[11] |
Qian Liu, Xinmin Yang, Heung Wing Joseph Lee. On saddle points of a class of augmented lagrangian functions. Journal of Industrial and Management Optimization, 2007, 3 (4) : 693-700. doi: 10.3934/jimo.2007.3.693 |
[12] |
Gabriel Soler López. Accumulation points of flows on the Klein bottle. Discrete and Continuous Dynamical Systems, 2003, 9 (2) : 497-503. doi: 10.3934/dcds.2003.9.497 |
[13] |
Sergio Grillo, Marcela Zuccalli. Variational reduction of Lagrangian systems with general constraints. Journal of Geometric Mechanics, 2012, 4 (1) : 49-88. doi: 10.3934/jgm.2012.4.49 |
[14] |
Brittany Froese Hamfeldt, Jacob Lesniewski. A convergent finite difference method for computing minimal Lagrangian graphs. Communications on Pure and Applied Analysis, 2022, 21 (2) : 393-418. doi: 10.3934/cpaa.2021182 |
[15] |
Radu Saghin. On the number of ergodic minimizing measures for Lagrangian flows. Discrete and Continuous Dynamical Systems, 2007, 17 (3) : 501-507. doi: 10.3934/dcds.2007.17.501 |
[16] |
Michał Jóźwikowski, Mikołaj Rotkiewicz. Bundle-theoretic methods for higher-order variational calculus. Journal of Geometric Mechanics, 2014, 6 (1) : 99-120. doi: 10.3934/jgm.2014.6.99 |
[17] |
Jeffrey Boland. On rigidity properties of contact time changes of locally symmetric geodesic flows. Discrete and Continuous Dynamical Systems, 2000, 6 (3) : 645-650. doi: 10.3934/dcds.2000.6.645 |
[18] |
David Ralston, Serge Troubetzkoy. Ergodic infinite group extensions of geodesic flows on translation surfaces. Journal of Modern Dynamics, 2012, 6 (4) : 477-497. doi: 10.3934/jmd.2012.6.477 |
[19] |
Katrin Gelfert. Non-hyperbolic behavior of geodesic flows of rank 1 surfaces. Discrete and Continuous Dynamical Systems, 2019, 39 (1) : 521-551. doi: 10.3934/dcds.2019022 |
[20] |
Artur O. Lopes, Vladimir A. Rosas, Rafael O. Ruggiero. Cohomology and subcohomology problems for expansive, non Anosov geodesic flows. Discrete and Continuous Dynamical Systems, 2007, 17 (2) : 403-422. doi: 10.3934/dcds.2007.17.403 |
2020 Impact Factor: 1.392
Tools
Metrics
Other articles
by authors
[Back to Top]