The focus of the current paper is the higher order nonlinear dispersive equation which models unidirectional propagation of small amplitude long waves in dispersive media. The specific interest is in the initial-boundary value problem where spatial variable lies in $\mathbb R^+,$ namely, quarter plane problem. With proper requirement on initial and boundary condition, we show local and global well posedness.
Citation: |
[1] |
T. B. Benjamin, J. L. Bona and J. J. Mahony, Model equations for long waves in nonlinear dispersive systems, Philos. Trans. Royal Soc. London, Series A, 272 (1972), 47-78.
doi: 10.1098/rsta.1972.0032.![]() ![]() ![]() |
[2] |
B. Boczar-Karakiewicz, J. L. Bona, W. Romanczyk and E. B. Thornton, Seasonal and interseasonal vaiability of sand bars at Duck, NC, USA. Observations and model predictions}, submitted.
![]() |
[3] |
J. L. Bona and P. J. Bryant, A mathematical model for long waves generated by wavemakers in non-linear dispersive systems, Proc. Cambridge Philos. Soc., 73 (1973), 391-405.
doi: 10.1017/S0305004100076945.![]() ![]() ![]() |
[4] |
J. L. Bona, X. Carvajar, M. Panthee and M. Scialom, Higher-order Hamiltonian model for unidirectional water waves, to appear in Journal of Nonlinear Science and in https://arxiv.org/pdf/1509.08510.pdf.
![]() |
[5] |
J. L. Bona, H. Chen and C.-H. Hsia, Well-posedness for regularized nonlinear dispersive wave equations, Discrete Continuous Dyn. Systems, Series A, 23 (2009), 1253-1275.
doi: 10.3934/dcds.2009.23.1253.![]() ![]() ![]() |
[6] |
J. L. Bona, H. Chen, S. Sun and B.-Y. Zhang, Comparison of quarter-plane and two-point boundary value problems: The BBM-equation, Discrete Continuous Dyn. Systems, 13 (2005), 921-940.
doi: 10.3934/dcds.2005.13.921.![]() ![]() ![]() |
[7] |
J. L. Bona and V. Dougalis, An initial and boundary value problem for a model equation for propagation of long waves, J. Math. Anal. Appl., 75 (1980), 503-522.
doi: 10.1016/0022-247X(80)90098-0.![]() ![]() ![]() |
[8] |
J. L. Bona and L. Luo, Initial-boundary-value problems for model equations for the propagation of long waves, In Evolution Equations, (ed. G. Gerreyra, G. Goldstein and F. Neubrander), Lecture Notes in Pure and Appl. Math. , Marcel Dekker: New York, 168 (1995), 65-94.
![]() |
[9] |
J. L. Bona, W. G. Pritchard and L. R. Scott, An evaluation of a model equation for water waves, Philos. Trans. Royal. Soc. London, Series A, 302 (1981), 457-510.
doi: 10.1098/rsta.1981.0178.![]() ![]() ![]() |
[10] |
J. L. Bona, S. Sun and B.-Y. Zhang, A non-homogeneous boundary-value problem for the Korteweg-de Vries equation in a quarter plane, Trans. American Math. Soc., 354 (2002), 427-490.
doi: 10.1090/S0002-9947-01-02885-9.![]() ![]() ![]() |
[11] |
J. L. Bona and V. Varlamov, Wave generation by a moving boundary, Contemp. Math., 371 (2005), 41-71.
doi: 10.1090/conm/371/06847.![]() ![]() ![]() |
[12] |
J. Holmer, The initial-boundary value problem for the Korteweg-de Vries equation, Comm. Partial Differential Eqns., 31 (2006), 1151-1190.
doi: 10.1080/03605300600718503.![]() ![]() ![]() |
[13] |
D. H. Peregrine, Calculations of the development of an undular bore, J. Fluid Mech., 25 (1966), 321-330.
doi: 10.1017/S0022112066001678.![]() ![]() |