We study the p-Laplace elliptic equations in the unit ball under the Dirichlet boundary condition. We call u a least energy solution if it is a minimizer of the Lagrangian functional on the Nehari manifold. A least energy solution becomes a positive solution. Assume that the nonlinear term is radial and it vanishes in $|x| <a$ and it is positive in $a<|x|<1$. We prove that if a is close enough to 1, then no least energy solution is radial. Therefore there exist both a positive radial solution and a positive nonradial solution.
Citation: |
M. Badiale
and E. Serra
, Multiplicity results for the supercritical Hénon equation, Adv. Nonlinear Stud., 4 (2004)
, 453-467.
doi: 10.1515/ans-2004-0406.![]() ![]() ![]() |
|
V. Barutello
, S. Secchi
and E. Serra
, A note on the radial solutions for the supercritical Hénon equation, J. Math. Anal. Appl., 341 (2008)
, 720-728.
doi: 10.1016/j.jmaa.2007.10.052.![]() ![]() ![]() |
|
J. Byeon
and Z.-Q. Wang
, On the Hénon equation: asymptotic profile of ground states, Ⅰ, Ann. Inst. H. Poincaré Anal. Non Linéaire, 23 (2006)
, 803-828.
doi: 10.1016/j.anihpc.2006.04.001.![]() ![]() ![]() |
|
J. Byeon
and Z.-Q. Wang
, On the Hénon equation: Asymptotic profile of ground states, Ⅱ, J. Differential Equations, 216 (2005)
, 78-108.
doi: 10.1016/j.jde.2005.02.018.![]() ![]() ![]() |
|
M. Calanchi
, S. Secchi
and E. Terraneo
, Multiple solutions for a Hénon-like equation on the annulus, J. Differential Equations, 245 (2008)
, 1507-1525.
doi: 10.1016/j.jde.2008.06.018.![]() ![]() ![]() |
|
D. Cao
and S. Peng
, The asymptotic behaviour of the ground state solutions for Hénon equation, J. Math. Anal. Appl., 278 (2003)
, 1-17.
doi: 10.1016/S0022-247X(02)00292-5.![]() ![]() ![]() |
|
J.-L. Chern
and C.-S. Lin
, The symmetry of least-energy solutions for semilinear elliptic equations, J. Differential Equations, 187 (2003)
, 240-268.
doi: 10.1016/S0022-0396(02)00080-3.![]() ![]() ![]() |
|
K. Deimling,
Nonlinear Functional Analysis Springer-Verlag, Berlin, 1985.
doi: 10.1007/978-3-662-00547-7.![]() ![]() ![]() |
|
P. Drábek and J. Milota,
Methods of Nonlinear Analysis: Applications to Differential Equations Second edition, Birkhäuser, Berlin, 2013.
![]() |
|
P. Esposito
, A. Pistoia
and J. Wei
, Concentrating solutions for the Hénon equation in $\mathbb{R}^2$, J. Anal. Math., 100 (2006)
, 249-280.
doi: 10.1007/BF02916763.![]() ![]() ![]() |
|
N. Hirano
, Existence of positive solutions for the Hénon equation involving critical Sobolev terms, J. Differential Equations, 247 (2009)
, 1311-1333.
doi: 10.1016/j.jde.2009.06.008.![]() ![]() ![]() |
|
R. Kajikiya
, Non-even least energy solutions of the Emden-Fowler equation, Proc. Amer. Math. Soc., 140 (2012)
, 1353-1362.
doi: 10.1090/S0002-9939-2011-11172-9.![]() ![]() ![]() |
|
R. Kajikiya
, Non-radial least energy solutions of the generalized Hénon equation, J. Differential Equations, 252 (2012)
, 1987-2003.
doi: 10.1016/j.jde.2011.08.032.![]() ![]() ![]() |
|
R. Kajikiya
, Nonradial positive solutions of the p-Laplace Emden-Fowler equation with sign-changing weight, Mathematische Nachrichten, 289 (2016)
, 290-299.
doi: 10.1002/mana.201500103.![]() ![]() ![]() |
|
R. Kajikiya, Symmetric and asymmetric solutions of p-Laplace elliptic equations in hollow domains, To appear in Adv. Nonlinear Stud.
![]() |
|
R. A. Moore
and Z. Nehari
, Nonoscillation theorems for a class of nonlinear differential equations, Trans. Amer. Math. Soc., 93 (1959)
, 30-52.
doi: 10.1090/S0002-9947-1959-0111897-8.![]() ![]() ![]() |
|
R. S. Palais
, The principle of symmetric criticality, Comm. Math. Phys., 69 (1979)
, 19-30.
doi: 10.1007/BF01941322.![]() ![]() ![]() |
|
A. Pistoia
and E. Serra
, Multi-peak solutions for the Hénon equation with slightly subcritical growth, Math. Z., 256 (2007)
, 75-97.
doi: 10.1007/s00209-006-0060-9.![]() ![]() ![]() |
|
P. Pucci and J. Serrin,
The Maximum Principle Birkhäuser, Berlin, 2007.
![]() ![]() |
|
E. Serra
, Non radial positive solutions for the Hénon equation with critical growth, Calc. Var. Partial Differential Equations, 23 (2005)
, 301-326.
doi: 10.1007/s00526-004-0302-9.![]() ![]() ![]() |
|
D. Smets
, M. Willem
and J. Su
, Non-radial ground states for the Hénon equation, Commun. Contemp. Math., 4 (2002)
, 467-480.
doi: 10.1142/S0219199702000725.![]() ![]() ![]() |
|
P. Tolksdorf
, On the Dirichlet problem for quasilinear equations in domains with conical boundary points, Comm. Partial Differential Equations, 8 (1983)
, 773-817.
doi: 10.1080/03605308308820285.![]() ![]() ![]() |
|
J. L. Vazquez
, A strong maximum principle for some quasilinear elliptic equations, Appl Math Optim, 12 (1984)
, 191-202.
doi: 10.1007/BF01449041.![]() ![]() ![]() |
|
E. Zeidler,
Applied Functional Analysis: Main Principles and Their Applications Springer, New York, 1995.
![]() ![]() |