
-
Previous Article
On an exponential attractor for a class of PDEs with degenerate diffusion and chemotaxis
- DCDS Home
- This Issue
-
Next Article
Bounded and unbounded capillary surfaces derived from the catenoid
On the classification of generalized competitive Atkinson-Allen models via the dynamics on the boundary of the carrying simplex
1. | Department of Mathematics and Statistics, University of Helsinki, Helsinki FI-00014, Finland |
2. | Mathematics and Science College, Shanghai Normal University, Shanghai 200234, China |
3. | School of Sciences, Zhejiang A & F University, Hangzhou 311300, China |
$T_i(x)=\frac{(1+r_i)(1-c_i)x_i}{1+\sum_{j=1}^nb_{ij}x_j}+c_ix_i, 0 <c_i <1, b_{ij}, r_i>0, i, j=1, ···, n, $ |
$r_i=1$ |
$c_i=c$ |
$i=1, ..., n$ |
$n$ |
$T$ |
References:
[1] |
L. J. S. Allen, E. J. Allen and D. N. Atkinson, Integrodifference equations applied to plant dispersal, competition, and control, in Differential Equations with Applications to Biology Fields Institute Communications (eds. S. Ruan, G. Wolkowicz and J. Wu), American Mathematical Society, Providence, RI, 21 (1999), 15–30 |
[2] |
D. N. Atkinson, Mathematical Models for Plant Competition and Dispersal Master's Thesis, Texas Tech University, Lubbock, TX, 79409, 1997. |
[3] | |
[4] |
S. Baigent,
Convexity-preserving flows of totally competitive planar Lotka-Volterra equations and the geometry of the carrying simplex, Proc. Edinb. Math. Soc., 55 (2012), 53-63.
doi: 10.1017/S0013091510000684. |
[5] |
S. Baigent,
Convexity of the carrying simplex for discrete-time planar competitive Kolmogorov systems, J. Difference Equ. Appl., 22 (2016), 609-622.
doi: 10.1080/10236198.2015.1125895. |
[6] |
S. Baigent,
Geometry of carrying simplices of 3-species competitive Lotka-Volterra systems, Nonlinearity, 26 (2013), 1001-1029.
doi: 10.1088/0951-7715/26/4/1001. |
[7] |
S. Baigent and Z. Hou,
Global stability of interior and boundary fixed points for Lotka-Volterra systems, Differ. Equ. Dyn. Syst., 20 (2012), 53-66.
doi: 10.1007/s12591-012-0103-0. |
[8] |
X. Chen, J. Jiang and L. Niu,
On Lotka-Volterra equations with identical minimal intrinsic growth rate, SIAM J. Applied Dyn. Sys., 14 (2015), 1558-1599.
doi: 10.1137/15M1006878. |
[9] |
S. N. Chow and J. K. Hale, Methods of Bifurcation Theory Springer-Verlag, New York, 1982. |
[10] |
J. M. Cushing, On the fundamental bifurcation theorem for semelparous Leslie models, Chapter 11 in Mathematics of Planet Earth: Dynamics, Games and Science (eds. J. P. Bourguignon, R. Jeltsch, A. Pinto, and M. Viana), CIM Mathematical Sciences Series, Springer, Berlin, 1 (2015), 215–251.
doi: 10.1007/978-3-319-16118-1_12. |
[11] |
N. V. Davydova, O. Diekmann and S. A. van Gils,
On circulant populations. I. The algebra of semelparity, Linear Algebra Appl., 398 (2005), 185-243.
doi: 10.1016/j.laa.2004.12.020. |
[12] |
O. Diekmann, Y. Wang and P. Yan,
Carrying simplices in discrete competitive systems and age-structured semelparous populations, Discrete Contin. Dyn. Syst., 20 (2008), 37-52.
|
[13] |
A. Gaunersdorfer, C. H. Hommes and F. O. O. Wagener,
Bifurcation routes to volatility clustering under evolutionary learning, Journal of Economic Behavior & Organization, 67 (2008), 27-47.
doi: 10.1016/j.jebo.2007.07.004. |
[14] |
S. A. H. Geritz,
Resident-invader dynamics and the coexistence of similar strategies, J. Math. Biol., 50 (2005), 67-82.
doi: 10.1007/s00285-004-0280-8. |
[15] |
S. A. H. Geritz, M. Gyllenberg, F. J. A. Jacobs and K. Parvinen,
Invasion dynamics and attractor inheritance, J. Math. Biol., 44 (2002), 548-560.
doi: 10.1007/s002850100136. |
[16] |
S. A. H. Geritz and E. Kisdi,
On the mechanistic underpinning of discrete-time population models with complex dynamics, J. Theor. Biol., 228 (2004), 261-269.
doi: 10.1016/j.jtbi.2004.01.003. |
[17] |
S. A. H. Geritz, E. Kisdi, G. Meszéna and J. A. J. Metz,
Evolutionarily singular strategies and the adaptive growth and branching of the evolutionary tree, Evolutionary Ecology, 12 (1998), 35-57.
doi: 10.1023/A:1006554906681. |
[18] |
S. A. H. Geritz, J. A. J. Metz, E. Kisdi and G. Meszéna,
Dynamics of adaptation and evolutionary branching, Phys. Rev. Letters, 78 (1997), 2024-2027.
doi: 10.1103/PhysRevLett.78.2024. |
[19] |
W. Govaerts, R. K. Ghaziani, Y. A. Kuznetsov and H. G. E. Meijer,
Numerical methods for two-parameter local bifurcation analysis of maps, SIAM J. Sci. Comput., 29 (2007), 2644-2667.
doi: 10.1137/060653858. |
[20] |
W. Govaerts, Y. A. Kuznetsov, H. G. E. Meijer and N. Neirynck, A study of resonance tongues near a Chenciner bifurcation using MatcontM, in European Nonlinear Dynamics Conference, 2011, 24–29. |
[21] |
M. Gyllenberg and I. I. Hanski,
Habitat deterioration, habitat destruction, and metapopulation persistence in a heterogenous landscape, Theor. Popul. Biol., 52 (1997), 198-215.
doi: 10.1006/tpbi.1997.1333. |
[22] |
M. Gyllenberg and P. Yan,
Four limit cycles for a three-dimensional competitive Lotka-Volterra system with a heteroclinic cycle, Comp. Math. Appl., 58 (2009), 649-669.
doi: 10.1016/j.camwa.2009.03.111. |
[23] |
M. Gyllenberg and P. Yan,
On the number of limit cycles for three dimensional Lotka-Volterra systems, Discrete Contin. Dyn. Syst. Ser. B, 11 (2009), 347-352.
doi: 10.3934/dcdsb.2009.11.347. |
[24] |
M. Gyllenberg, P. Yan and Y. Wang,
A 3D competitive Lotka-Volterra system with three limit cycles: A falsification of a conjecture by Hofbauer and So, Appl. Math. Lett., 19 (2006), 1-7.
doi: 10.1016/j.aml.2005.01.002. |
[25] |
M. W. Hirsch,
On existence and uniqueness of the carrying simplex for competitive dynamical systems, J. Biol. Dyn., 2 (2008), 169-179.
doi: 10.1080/17513750801939236. |
[26] |
M. W. Hirsch,
Systems of differential equations which are competitive or cooperative: Ⅲ. Competing species, Nonlinearity, 1 (1988), 51-71.
doi: 10.1088/0951-7715/1/1/003. |
[27] |
J. Hofbauer and K. Sigmund, Evolutionary Games and Population Dynamics Cambridge University Press, Cambridge, 1998.
doi: 10.1017/CBO9781139173179. |
[28] |
J. Hofbauer and J. W.-H. So,
Multiple limit cycles for three dimensional Lotka-Volterra equations, Appl. Math. Lett., 7 (1994), 65-70.
doi: 10.1016/0893-9659(94)90095-7. |
[29] |
Z. Hou and S. Baigent,
Fixed point global attractors and repellors in competitive Lotka-Volterra systems, Dyn. Syst., 26 (2011), 367-390.
doi: 10.1080/14689367.2011.554384. |
[30] |
Z. Hou and S. Baigent,
Global stability and repulsion in autonomous Kolmogorov systems, Commun. Pure Appl. Anal., 14 (2015), 1205-1238.
doi: 10.3934/cpaa.2015.14.1205. |
[31] |
J. Jiang and L. Niu,
On the equivalent classification of three-dimensional competitive Atkinson/Allen models relative to the boundary fixed points, Discrete Contin. Dyn. Syst., 36 (2016), 217-244.
doi: 10.3934/dcds.2016.36.217. |
[32] |
J. Jiang and L. Niu,
On the equivalent classification of three-dimensional competitive Leslie/Gower models via the boundary dynamics on the carrying simplex, J. Math. Biol., 74 (2017), 1223-1261.
doi: 10.1007/s00285-016-1052-y. |
[33] |
J. Jiang, L. Niu and Y. Wang,
On heteroclinic cycles of competitive maps via carrying simplices, J. Math. Biol., 72 (2016), 939-972.
doi: 10.1007/s00285-015-0920-1. |
[34] |
J. Jiang, L. Niu and D. Zhu,
On the complete classification of nullcline stable competitive three-dimensional Gompertz models, Nonlinear Anal. R.W.A., 20 (2014), 21-35.
doi: 10.1016/j.nonrwa.2014.04.006. |
[35] |
F. G. W. Jones and J. N. Perry,
Modelling populations of cyst-nematodes (nematoda: Heteroderidae), J. Applied Ecology, 15 (1978), 349-371.
doi: 10.2307/2402596. |
[36] |
Y. A. Kuznetsov, Elements of Applied Bifurcation Theory 2$^{nd}$ edition, Springer-Verlag, New York, 1998. |
[37] |
Y. A. Kuznetsov and R. J. Sacker, Neimark-Sacker bifurcation Scholarpedia 3 (2008), 1845.
doi: 10.4249/scholarpedia.1845. |
[38] |
Z. Lu and Y. Luo,
Three limit cycles for a three-dimensional Lotka-Volterra competitive system with a heteroclinic cycle, Comp. Math. Appl., 46 (2003), 231-238.
doi: 10.1016/S0898-1221(03)90027-7. |
[39] |
J. Mierczyński,
The $C^1$-property of carrying simplices for a class of competitive systems of ODEs, J. Differential Equations, 111 (1994), 385-409.
doi: 10.1006/jdeq.1994.1087. |
[40] |
A. G. Pakes and R. A. Maller, Mathematical Ecology of Plant Species Competition: A Class of Deterministic Models for Binary Mixtures of Plant Genotypes Cambridge Univ. Press, Cambridge, 1990. |
[41] |
L.-I. W. Roeger and L. J. S. Allen,
Discrete May-Leonard competition models I, J. Diff. Equ. Appl., 10 (2004), 77-98.
doi: 10.1080/10236190310001603662. |
[42] |
A. Ruiz-Herrera,
Exclusion and dominance in discrete population models via the carrying simplex, J. Diff. Equ. Appl., 19 (2013), 96-113.
doi: 10.1080/10236198.2011.628663. |
[43] |
H. L. Smith,
Periodic competitive differential equations and the discrete dynamics of competitive maps, J. Differential Equations, 64 (1986), 165-194.
doi: 10.1016/0022-0396(86)90086-0. |
[44] |
H. L. Smith,
Planar competitive and cooperative difference equations, J. Diff. Equ. Appl., 3 (1998), 335-357.
doi: 10.1080/10236199708808108. |
[45] |
P. van den Driessche and M. L. Zeeman,
Three-dimensional competitive Lotka-Volterra systems with no periodic orbits, SIAM J. Appl. Math., 58 (1998), 227-234.
doi: 10.1137/S0036139995294767. |
[46] |
Y. Wang and J. Jiang,
Uniqueness and attractivity of the carrying simplex for discrete-time competitive dynamical systems, J. Differential Equations, 186 (2002), 611-632.
doi: 10.1016/S0022-0396(02)00025-6. |
[47] |
D. Xiao and W. Li,
Limit cycles for the competitive three dimensional Lotka-Volterra system, J. Differential Equations, 164 (2000), 1-15.
doi: 10.1006/jdeq.1999.3729. |
[48] |
P. Yu, M. Han and D. Xiao,
Four small limit cycles around a Hopf singular point in 3-dimensional competitive Lotka-Volterra systems, J. Math. Anal. Appl., 436 (2016), 521-555.
doi: 10.1016/j.jmaa.2015.12.002. |
[49] |
E. C. Zeeman and M. L. Zeeman,
An n-dimensional competitive Lotka-Volterra system is generically determined by the edges of its carrying simplex, Nonlinearity, 15 (2002), 2019-2032.
doi: 10.1088/0951-7715/15/6/312. |
[50] |
E. C. Zeeman and M. L. Zeeman,
From local to global behavior in competitive Lotka-Volterra systems, Trans. Amer. Math. Soc., 355 (2002), 713-734.
doi: 10.1090/S0002-9947-02-03103-3. |
[51] |
E. C. Zeeman and M. L. Zeeman, On the convexity of carrying simplices in competitive Lotka-Volterra systems, in Differential Equations, Dynamical Systems, and Control Science, Lecture Notes in Pure and Appl. Math., 152, Dekker, New York, (1994), 353–364. |
[52] |
M. L. Zeeman,
Hopf bifurcations in competitive three-dimensional Lotka-Volterra systems, Dynam. Stability Systems, 8 (1993), 189-217.
doi: 10.1080/02681119308806158. |
show all references
References:
[1] |
L. J. S. Allen, E. J. Allen and D. N. Atkinson, Integrodifference equations applied to plant dispersal, competition, and control, in Differential Equations with Applications to Biology Fields Institute Communications (eds. S. Ruan, G. Wolkowicz and J. Wu), American Mathematical Society, Providence, RI, 21 (1999), 15–30 |
[2] |
D. N. Atkinson, Mathematical Models for Plant Competition and Dispersal Master's Thesis, Texas Tech University, Lubbock, TX, 79409, 1997. |
[3] | |
[4] |
S. Baigent,
Convexity-preserving flows of totally competitive planar Lotka-Volterra equations and the geometry of the carrying simplex, Proc. Edinb. Math. Soc., 55 (2012), 53-63.
doi: 10.1017/S0013091510000684. |
[5] |
S. Baigent,
Convexity of the carrying simplex for discrete-time planar competitive Kolmogorov systems, J. Difference Equ. Appl., 22 (2016), 609-622.
doi: 10.1080/10236198.2015.1125895. |
[6] |
S. Baigent,
Geometry of carrying simplices of 3-species competitive Lotka-Volterra systems, Nonlinearity, 26 (2013), 1001-1029.
doi: 10.1088/0951-7715/26/4/1001. |
[7] |
S. Baigent and Z. Hou,
Global stability of interior and boundary fixed points for Lotka-Volterra systems, Differ. Equ. Dyn. Syst., 20 (2012), 53-66.
doi: 10.1007/s12591-012-0103-0. |
[8] |
X. Chen, J. Jiang and L. Niu,
On Lotka-Volterra equations with identical minimal intrinsic growth rate, SIAM J. Applied Dyn. Sys., 14 (2015), 1558-1599.
doi: 10.1137/15M1006878. |
[9] |
S. N. Chow and J. K. Hale, Methods of Bifurcation Theory Springer-Verlag, New York, 1982. |
[10] |
J. M. Cushing, On the fundamental bifurcation theorem for semelparous Leslie models, Chapter 11 in Mathematics of Planet Earth: Dynamics, Games and Science (eds. J. P. Bourguignon, R. Jeltsch, A. Pinto, and M. Viana), CIM Mathematical Sciences Series, Springer, Berlin, 1 (2015), 215–251.
doi: 10.1007/978-3-319-16118-1_12. |
[11] |
N. V. Davydova, O. Diekmann and S. A. van Gils,
On circulant populations. I. The algebra of semelparity, Linear Algebra Appl., 398 (2005), 185-243.
doi: 10.1016/j.laa.2004.12.020. |
[12] |
O. Diekmann, Y. Wang and P. Yan,
Carrying simplices in discrete competitive systems and age-structured semelparous populations, Discrete Contin. Dyn. Syst., 20 (2008), 37-52.
|
[13] |
A. Gaunersdorfer, C. H. Hommes and F. O. O. Wagener,
Bifurcation routes to volatility clustering under evolutionary learning, Journal of Economic Behavior & Organization, 67 (2008), 27-47.
doi: 10.1016/j.jebo.2007.07.004. |
[14] |
S. A. H. Geritz,
Resident-invader dynamics and the coexistence of similar strategies, J. Math. Biol., 50 (2005), 67-82.
doi: 10.1007/s00285-004-0280-8. |
[15] |
S. A. H. Geritz, M. Gyllenberg, F. J. A. Jacobs and K. Parvinen,
Invasion dynamics and attractor inheritance, J. Math. Biol., 44 (2002), 548-560.
doi: 10.1007/s002850100136. |
[16] |
S. A. H. Geritz and E. Kisdi,
On the mechanistic underpinning of discrete-time population models with complex dynamics, J. Theor. Biol., 228 (2004), 261-269.
doi: 10.1016/j.jtbi.2004.01.003. |
[17] |
S. A. H. Geritz, E. Kisdi, G. Meszéna and J. A. J. Metz,
Evolutionarily singular strategies and the adaptive growth and branching of the evolutionary tree, Evolutionary Ecology, 12 (1998), 35-57.
doi: 10.1023/A:1006554906681. |
[18] |
S. A. H. Geritz, J. A. J. Metz, E. Kisdi and G. Meszéna,
Dynamics of adaptation and evolutionary branching, Phys. Rev. Letters, 78 (1997), 2024-2027.
doi: 10.1103/PhysRevLett.78.2024. |
[19] |
W. Govaerts, R. K. Ghaziani, Y. A. Kuznetsov and H. G. E. Meijer,
Numerical methods for two-parameter local bifurcation analysis of maps, SIAM J. Sci. Comput., 29 (2007), 2644-2667.
doi: 10.1137/060653858. |
[20] |
W. Govaerts, Y. A. Kuznetsov, H. G. E. Meijer and N. Neirynck, A study of resonance tongues near a Chenciner bifurcation using MatcontM, in European Nonlinear Dynamics Conference, 2011, 24–29. |
[21] |
M. Gyllenberg and I. I. Hanski,
Habitat deterioration, habitat destruction, and metapopulation persistence in a heterogenous landscape, Theor. Popul. Biol., 52 (1997), 198-215.
doi: 10.1006/tpbi.1997.1333. |
[22] |
M. Gyllenberg and P. Yan,
Four limit cycles for a three-dimensional competitive Lotka-Volterra system with a heteroclinic cycle, Comp. Math. Appl., 58 (2009), 649-669.
doi: 10.1016/j.camwa.2009.03.111. |
[23] |
M. Gyllenberg and P. Yan,
On the number of limit cycles for three dimensional Lotka-Volterra systems, Discrete Contin. Dyn. Syst. Ser. B, 11 (2009), 347-352.
doi: 10.3934/dcdsb.2009.11.347. |
[24] |
M. Gyllenberg, P. Yan and Y. Wang,
A 3D competitive Lotka-Volterra system with three limit cycles: A falsification of a conjecture by Hofbauer and So, Appl. Math. Lett., 19 (2006), 1-7.
doi: 10.1016/j.aml.2005.01.002. |
[25] |
M. W. Hirsch,
On existence and uniqueness of the carrying simplex for competitive dynamical systems, J. Biol. Dyn., 2 (2008), 169-179.
doi: 10.1080/17513750801939236. |
[26] |
M. W. Hirsch,
Systems of differential equations which are competitive or cooperative: Ⅲ. Competing species, Nonlinearity, 1 (1988), 51-71.
doi: 10.1088/0951-7715/1/1/003. |
[27] |
J. Hofbauer and K. Sigmund, Evolutionary Games and Population Dynamics Cambridge University Press, Cambridge, 1998.
doi: 10.1017/CBO9781139173179. |
[28] |
J. Hofbauer and J. W.-H. So,
Multiple limit cycles for three dimensional Lotka-Volterra equations, Appl. Math. Lett., 7 (1994), 65-70.
doi: 10.1016/0893-9659(94)90095-7. |
[29] |
Z. Hou and S. Baigent,
Fixed point global attractors and repellors in competitive Lotka-Volterra systems, Dyn. Syst., 26 (2011), 367-390.
doi: 10.1080/14689367.2011.554384. |
[30] |
Z. Hou and S. Baigent,
Global stability and repulsion in autonomous Kolmogorov systems, Commun. Pure Appl. Anal., 14 (2015), 1205-1238.
doi: 10.3934/cpaa.2015.14.1205. |
[31] |
J. Jiang and L. Niu,
On the equivalent classification of three-dimensional competitive Atkinson/Allen models relative to the boundary fixed points, Discrete Contin. Dyn. Syst., 36 (2016), 217-244.
doi: 10.3934/dcds.2016.36.217. |
[32] |
J. Jiang and L. Niu,
On the equivalent classification of three-dimensional competitive Leslie/Gower models via the boundary dynamics on the carrying simplex, J. Math. Biol., 74 (2017), 1223-1261.
doi: 10.1007/s00285-016-1052-y. |
[33] |
J. Jiang, L. Niu and Y. Wang,
On heteroclinic cycles of competitive maps via carrying simplices, J. Math. Biol., 72 (2016), 939-972.
doi: 10.1007/s00285-015-0920-1. |
[34] |
J. Jiang, L. Niu and D. Zhu,
On the complete classification of nullcline stable competitive three-dimensional Gompertz models, Nonlinear Anal. R.W.A., 20 (2014), 21-35.
doi: 10.1016/j.nonrwa.2014.04.006. |
[35] |
F. G. W. Jones and J. N. Perry,
Modelling populations of cyst-nematodes (nematoda: Heteroderidae), J. Applied Ecology, 15 (1978), 349-371.
doi: 10.2307/2402596. |
[36] |
Y. A. Kuznetsov, Elements of Applied Bifurcation Theory 2$^{nd}$ edition, Springer-Verlag, New York, 1998. |
[37] |
Y. A. Kuznetsov and R. J. Sacker, Neimark-Sacker bifurcation Scholarpedia 3 (2008), 1845.
doi: 10.4249/scholarpedia.1845. |
[38] |
Z. Lu and Y. Luo,
Three limit cycles for a three-dimensional Lotka-Volterra competitive system with a heteroclinic cycle, Comp. Math. Appl., 46 (2003), 231-238.
doi: 10.1016/S0898-1221(03)90027-7. |
[39] |
J. Mierczyński,
The $C^1$-property of carrying simplices for a class of competitive systems of ODEs, J. Differential Equations, 111 (1994), 385-409.
doi: 10.1006/jdeq.1994.1087. |
[40] |
A. G. Pakes and R. A. Maller, Mathematical Ecology of Plant Species Competition: A Class of Deterministic Models for Binary Mixtures of Plant Genotypes Cambridge Univ. Press, Cambridge, 1990. |
[41] |
L.-I. W. Roeger and L. J. S. Allen,
Discrete May-Leonard competition models I, J. Diff. Equ. Appl., 10 (2004), 77-98.
doi: 10.1080/10236190310001603662. |
[42] |
A. Ruiz-Herrera,
Exclusion and dominance in discrete population models via the carrying simplex, J. Diff. Equ. Appl., 19 (2013), 96-113.
doi: 10.1080/10236198.2011.628663. |
[43] |
H. L. Smith,
Periodic competitive differential equations and the discrete dynamics of competitive maps, J. Differential Equations, 64 (1986), 165-194.
doi: 10.1016/0022-0396(86)90086-0. |
[44] |
H. L. Smith,
Planar competitive and cooperative difference equations, J. Diff. Equ. Appl., 3 (1998), 335-357.
doi: 10.1080/10236199708808108. |
[45] |
P. van den Driessche and M. L. Zeeman,
Three-dimensional competitive Lotka-Volterra systems with no periodic orbits, SIAM J. Appl. Math., 58 (1998), 227-234.
doi: 10.1137/S0036139995294767. |
[46] |
Y. Wang and J. Jiang,
Uniqueness and attractivity of the carrying simplex for discrete-time competitive dynamical systems, J. Differential Equations, 186 (2002), 611-632.
doi: 10.1016/S0022-0396(02)00025-6. |
[47] |
D. Xiao and W. Li,
Limit cycles for the competitive three dimensional Lotka-Volterra system, J. Differential Equations, 164 (2000), 1-15.
doi: 10.1006/jdeq.1999.3729. |
[48] |
P. Yu, M. Han and D. Xiao,
Four small limit cycles around a Hopf singular point in 3-dimensional competitive Lotka-Volterra systems, J. Math. Anal. Appl., 436 (2016), 521-555.
doi: 10.1016/j.jmaa.2015.12.002. |
[49] |
E. C. Zeeman and M. L. Zeeman,
An n-dimensional competitive Lotka-Volterra system is generically determined by the edges of its carrying simplex, Nonlinearity, 15 (2002), 2019-2032.
doi: 10.1088/0951-7715/15/6/312. |
[50] |
E. C. Zeeman and M. L. Zeeman,
From local to global behavior in competitive Lotka-Volterra systems, Trans. Amer. Math. Soc., 355 (2002), 713-734.
doi: 10.1090/S0002-9947-02-03103-3. |
[51] |
E. C. Zeeman and M. L. Zeeman, On the convexity of carrying simplices in competitive Lotka-Volterra systems, in Differential Equations, Dynamical Systems, and Control Science, Lecture Notes in Pure and Appl. Math., 152, Dekker, New York, (1994), 353–364. |
[52] |
M. L. Zeeman,
Hopf bifurcations in competitive three-dimensional Lotka-Volterra systems, Dynam. Stability Systems, 8 (1993), 189-217.
doi: 10.1080/02681119308806158. |











Class | The Corresponding Parameters | Phase Portrait in |
1 | ![]() |
|
2 | (ⅰ) (ⅱ) |
![]() |
3 | (ⅰ) (ⅱ) |
![]() |
4 | (ⅰ) (ⅱ) (ⅲ) |
![]() |
5 | (ⅰ) (ⅱ) |
![]() |
6 | (ⅰ) (ⅱ) |
![]() |
7 | (ⅰ) (ⅱ) |
![]() |
8 | (ⅰ) (ⅱ) (ⅲ) |
![]() |
9 | (ⅰ) (ⅱ) (ⅲ) |
![]() |
10 | (ⅰ) (ⅱ) (ⅲ) |
![]() |
11 | (ⅰ) (ⅱ) (ⅲ) (ⅳ) |
![]() |
12 | (ⅰ) (ⅱ) (ⅲ) (ⅳ) |
![]() |
13 | (ⅰ) (ⅱ) |
![]() |
14 | (ⅰ) (ⅱ) (ⅲ) |
![]() |
15 | (ⅰ) (ⅱ) (ⅲ) |
![]() |
16 | (ⅰ) (ⅱ) (ⅲ) |
![]() |
17 | (ⅰ) (ⅱ) (ⅲ) (ⅳ) |
![]() |
18 | (ⅰ) (ⅱ) (ⅲ) (ⅳ) |
![]() |
19 | (ⅰ) (ⅱ) |
![]() |
20 | (ⅰ) (ⅱ) (ⅲ) |
![]() |
21 | (ⅰ) (ⅱ) (ⅲ) (ⅳ) |
![]() |
22 | (ⅰ) (ⅱ) (ⅲ) |
![]() |
23 | (ⅰ) (ⅱ) |
![]() |
24 | (ⅰ) (ⅱ) (ⅲ) |
![]() |
25 | (ⅰ) (ⅱ) (ⅲ) (ⅳ) |
![]() |
26 | (ⅰ) (ⅱ) (ⅲ) |
![]() |
27 | ![]() |
|
28 | (ⅰ) (ⅱ) |
![]() |
29 | (ⅰ) (ⅱ) |
![]() |
30 | (ⅰ) (ⅱ) (ⅲ) |
![]() |
31 | (ⅰ) (ⅱ) (ⅲ) |
![]() |
32 | (ⅰ) (ⅱ) (ⅲ) (ⅳ) |
![]() |
33 | (ⅰ) (ⅱ) (ⅲ) (ⅳ) |
![]() |
Class | The Corresponding Parameters | Phase Portrait in |
1 | ![]() |
|
2 | (ⅰ) (ⅱ) |
![]() |
3 | (ⅰ) (ⅱ) |
![]() |
4 | (ⅰ) (ⅱ) (ⅲ) |
![]() |
5 | (ⅰ) (ⅱ) |
![]() |
6 | (ⅰ) (ⅱ) |
![]() |
7 | (ⅰ) (ⅱ) |
![]() |
8 | (ⅰ) (ⅱ) (ⅲ) |
![]() |
9 | (ⅰ) (ⅱ) (ⅲ) |
![]() |
10 | (ⅰ) (ⅱ) (ⅲ) |
![]() |
11 | (ⅰ) (ⅱ) (ⅲ) (ⅳ) |
![]() |
12 | (ⅰ) (ⅱ) (ⅲ) (ⅳ) |
![]() |
13 | (ⅰ) (ⅱ) |
![]() |
14 | (ⅰ) (ⅱ) (ⅲ) |
![]() |
15 | (ⅰ) (ⅱ) (ⅲ) |
![]() |
16 | (ⅰ) (ⅱ) (ⅲ) |
![]() |
17 | (ⅰ) (ⅱ) (ⅲ) (ⅳ) |
![]() |
18 | (ⅰ) (ⅱ) (ⅲ) (ⅳ) |
![]() |
19 | (ⅰ) (ⅱ) |
![]() |
20 | (ⅰ) (ⅱ) (ⅲ) |
![]() |
21 | (ⅰ) (ⅱ) (ⅲ) (ⅳ) |
![]() |
22 | (ⅰ) (ⅱ) (ⅲ) |
![]() |
23 | (ⅰ) (ⅱ) |
![]() |
24 | (ⅰ) (ⅱ) (ⅲ) |
![]() |
25 | (ⅰ) (ⅱ) (ⅲ) (ⅳ) |
![]() |
26 | (ⅰ) (ⅱ) (ⅲ) |
![]() |
27 | ![]() |
|
28 | (ⅰ) (ⅱ) |
![]() |
29 | (ⅰ) (ⅱ) |
![]() |
30 | (ⅰ) (ⅱ) (ⅲ) |
![]() |
31 | (ⅰ) (ⅱ) (ⅲ) |
![]() |
32 | (ⅰ) (ⅱ) (ⅲ) (ⅳ) |
![]() |
33 | (ⅰ) (ⅱ) (ⅲ) (ⅳ) |
![]() |
[1] |
Mats Gyllenberg, Jifa Jiang, Lei Niu, Ping Yan. Permanence and universal classification of discrete-time competitive systems via the carrying simplex. Discrete and Continuous Dynamical Systems, 2020, 40 (3) : 1621-1663. doi: 10.3934/dcds.2020088 |
[2] |
H. L. Smith, X. Q. Zhao. Competitive exclusion in a discrete-time, size-structured chemostat model. Discrete and Continuous Dynamical Systems - B, 2001, 1 (2) : 183-191. doi: 10.3934/dcdsb.2001.1.183 |
[3] |
Jifa Jiang, Lei Niu. On the equivalent classification of three-dimensional competitive Atkinson/Allen models relative to the boundary fixed points. Discrete and Continuous Dynamical Systems, 2016, 36 (1) : 217-244. doi: 10.3934/dcds.2016.36.217 |
[4] |
M. R. S. Kulenović, Orlando Merino. Global bifurcation for discrete competitive systems in the plane. Discrete and Continuous Dynamical Systems - B, 2009, 12 (1) : 133-149. doi: 10.3934/dcdsb.2009.12.133 |
[5] |
Yunshyong Chow, Sophia Jang. Neimark-Sacker bifurcations in a host-parasitoid system with a host refuge. Discrete and Continuous Dynamical Systems - B, 2016, 21 (6) : 1713-1728. doi: 10.3934/dcdsb.2016019 |
[6] |
Odo Diekmann, Yi Wang, Ping Yan. Carrying simplices in discrete competitive systems and age-structured semelparous populations. Discrete and Continuous Dynamical Systems, 2008, 20 (1) : 37-52. doi: 10.3934/dcds.2008.20.37 |
[7] |
Lin Niu, Yi Wang, Xizhuang Xie. Carrying simplex in the Lotka-Volterra competition model with seasonal succession with applications. Discrete and Continuous Dynamical Systems - B, 2021, 26 (4) : 2161-2172. doi: 10.3934/dcdsb.2021014 |
[8] |
Qizhen Xiao, Binxiang Dai. Heteroclinic bifurcation for a general predator-prey model with Allee effect and state feedback impulsive control strategy. Mathematical Biosciences & Engineering, 2015, 12 (5) : 1065-1081. doi: 10.3934/mbe.2015.12.1065 |
[9] |
Manuel Delgado, Inmaculada Gayte, Cristian Morales-Rodrigo, Antonio Suárez. On a chemotaxis model with competitive terms arising in angiogenesis. Discrete and Continuous Dynamical Systems - S, 2020, 13 (2) : 177-202. doi: 10.3934/dcdss.2020010 |
[10] |
Meng Liu, Chuanzhi Bai. Optimal harvesting of a stochastic delay competitive model. Discrete and Continuous Dynamical Systems - B, 2017, 22 (4) : 1493-1508. doi: 10.3934/dcdsb.2017071 |
[11] |
G. Donald Allen. A dynamic model for competitive-cooperative species. Conference Publications, 1998, 1998 (Special) : 29-50. doi: 10.3934/proc.1998.1998.29 |
[12] |
Hui Cao, Yicang Zhou, Zhien Ma. Bifurcation analysis of a discrete SIS model with bilinear incidence depending on new infection. Mathematical Biosciences & Engineering, 2013, 10 (5&6) : 1399-1417. doi: 10.3934/mbe.2013.10.1399 |
[13] |
Eduardo Liz. A new flexible discrete-time model for stable populations. Discrete and Continuous Dynamical Systems - B, 2018, 23 (6) : 2487-2498. doi: 10.3934/dcdsb.2018066 |
[14] |
Ming Chen, Hao Wang. Dynamics of a discrete-time stoichiometric optimal foraging model. Discrete and Continuous Dynamical Systems - B, 2021, 26 (1) : 107-120. doi: 10.3934/dcdsb.2020264 |
[15] |
Cuicui Li, Lin Zhou, Zhidong Teng, Buyu Wen. The threshold dynamics of a discrete-time echinococcosis transmission model. Discrete and Continuous Dynamical Systems - B, 2021, 26 (10) : 5197-5216. doi: 10.3934/dcdsb.2020339 |
[16] |
Ziyad AlSharawi, Nikhil Pal, Joydev Chattopadhyay. The role of vigilance on a discrete-time predator-prey model. Discrete and Continuous Dynamical Systems - B, 2022 doi: 10.3934/dcdsb.2022017 |
[17] |
Zhanyuan Hou, Stephen Baigent. Heteroclinic limit cycles in competitive Kolmogorov systems. Discrete and Continuous Dynamical Systems, 2013, 33 (9) : 4071-4093. doi: 10.3934/dcds.2013.33.4071 |
[18] |
Shengqin Xu, Chuncheng Wang, Dejun Fan. Stability and bifurcation in an age-structured model with stocking rate and time delays. Discrete and Continuous Dynamical Systems - B, 2019, 24 (6) : 2535-2549. doi: 10.3934/dcdsb.2018264 |
[19] |
Joaquín Delgado, Eymard Hernández–López, Lucía Ivonne Hernández–Martínez. Bautin bifurcation in a minimal model of immunoediting. Discrete and Continuous Dynamical Systems - B, 2020, 25 (4) : 1397-1414. doi: 10.3934/dcdsb.2019233 |
[20] |
Azmy S. Ackleh, Youssef M. Dib, S. R.-J. Jang. Competitive exclusion and coexistence in a nonlinear refuge-mediated selection model. Discrete and Continuous Dynamical Systems - B, 2007, 7 (4) : 683-698. doi: 10.3934/dcdsb.2007.7.683 |
2021 Impact Factor: 1.588
Tools
Metrics
Other articles
by authors
[Back to Top]