February  2018, 38(2): 715-722. doi: 10.3934/dcds.2018031

The continuum limit of Follow-the-Leader models — a short proof

1. 

Department of Mathematical Sciences, NTNU Norwegian University of Science and Technology, NO-7491 Trondheim, Norway

2. 

Department of Mathematics, University of Oslo, Blindern, NO-0316 Oslo, Norway

* Corresponding author: Helge Holden

We dedicate this paper to the memory of Hans Petter Langtangen (1962–2016)

Received  July 2017 Published  February 2018

Fund Project: Research was supported by the grant Waves and Nonlinear Phenomena (WaNP) from the Research Council of Norway. The research was done while the authors were at Institut MittagLeffler, Stockholm.

We offer a simple and self-contained proof that the Follow-the-Leader model converges to the Lighthill-Whitham-Richards model for traffic flow.

Citation: Helge Holden, Nils Henrik Risebro. The continuum limit of Follow-the-Leader models — a short proof. Discrete and Continuous Dynamical Systems, 2018, 38 (2) : 715-722. doi: 10.3934/dcds.2018031
References:
[1]

B. ArgallE. CheleshkinJ. M. GreenbergC. Hinde and P.-J. Lin, A rigorous treatment of a follow-the-leader traffic model with traffic lights present, SIAM J. Appl. Math., 63 (2002), 149-168.  doi: 10.1137/S0036139901391215.

[2]

A. AwA. KlarT. Materne and M. Rascle, Derivation of continuum traffic flow models from microscopic follow-the-leader models, SIAM J. Appl. Math., 63 (2002), 259-278.  doi: 10.1137/S0036139900380955.

[3]

R. M. Colombo and E. Rossi, On the micro-macro limit in traffic flow, Rend. Sem. Math. Univ. Padova, 131 (2014), 217-235.  doi: 10.4171/RSMUP/131-13.

[4]

E. Cristiani and S. Sahu, On the micro-to-macro limit for first-order traffic flow models on networks, Networks and Heterogeneous Media, 11 (2016), 395-413.  doi: 10.3934/nhm.2016002.

[5]

M. Di FrancescoS. Fagioli and M. D. Rosini, Deterministic particle approximation of scalar conservation laws, Boll. Unione Mat. Ital., 10 (2017), 487-501.  doi: 10.1007/s40574-017-0132-2.

[6]

M. Di Francesco and M. D. Rosini, Rigorous derivation of nonlinear scalar conservation laws from follow-the-leader type models via many particle limit, Arch. Ration. Mech. Anal., 217 (2015), 831-871.  doi: 10.1007/s00205-015-0843-4.

[7]

P. Goatin and F. Rossi, A traffic flow model with non-smooth metric interaction: well-posedness and micro-macro limit, Commun. Math. Sci., 15 (2017), 261-287.  doi: 10.4310/CMS.2017.v15.n1.a12.

[8]

K. Han, T. Yaob and T. L. Friesz, Lagrangian-based hydrodynamic model: Freeway traffic estimation, Preprint, arXiv: 1211.4619v1, 2012.

[9]

H. Holden and N. H. Risebro, Front Tracking for Hyperbolic Conservation Laws, Springer-Verlag, New York, 2015, Second edition. doi: 10.1007/978-3-662-47507-2.

[10]

H. Holden and N. H. Risebro. Follow-the-leader models can be viewed as a numerical approximation to the Lighthill-Whitham-Richards model for traffic flow. Preprint, arXiv: 1702.01718, 2017.

[11]

M. J. Lighthill and G. B. Whitham, Kinematic waves. II. A theory of traffic flow on long crowded roads, Proc. Roy. Soc. (London), Series A, 229 (1955), 317-345.  doi: 10.1098/rspa.1955.0089.

[12]

P. I. Richards, Shockwaves on the highway, Operations Research, 4 (1956), 42-51.  doi: 10.1287/opre.4.1.42.

[13]

E. Rossi, A justification of a LWR model based on a follow the leader description, Discrete Cont. Dyn. Syst. Series S, 7 (2014), 579-591.  doi: 10.3934/dcdss.2014.7.579.

show all references

We dedicate this paper to the memory of Hans Petter Langtangen (1962–2016)

References:
[1]

B. ArgallE. CheleshkinJ. M. GreenbergC. Hinde and P.-J. Lin, A rigorous treatment of a follow-the-leader traffic model with traffic lights present, SIAM J. Appl. Math., 63 (2002), 149-168.  doi: 10.1137/S0036139901391215.

[2]

A. AwA. KlarT. Materne and M. Rascle, Derivation of continuum traffic flow models from microscopic follow-the-leader models, SIAM J. Appl. Math., 63 (2002), 259-278.  doi: 10.1137/S0036139900380955.

[3]

R. M. Colombo and E. Rossi, On the micro-macro limit in traffic flow, Rend. Sem. Math. Univ. Padova, 131 (2014), 217-235.  doi: 10.4171/RSMUP/131-13.

[4]

E. Cristiani and S. Sahu, On the micro-to-macro limit for first-order traffic flow models on networks, Networks and Heterogeneous Media, 11 (2016), 395-413.  doi: 10.3934/nhm.2016002.

[5]

M. Di FrancescoS. Fagioli and M. D. Rosini, Deterministic particle approximation of scalar conservation laws, Boll. Unione Mat. Ital., 10 (2017), 487-501.  doi: 10.1007/s40574-017-0132-2.

[6]

M. Di Francesco and M. D. Rosini, Rigorous derivation of nonlinear scalar conservation laws from follow-the-leader type models via many particle limit, Arch. Ration. Mech. Anal., 217 (2015), 831-871.  doi: 10.1007/s00205-015-0843-4.

[7]

P. Goatin and F. Rossi, A traffic flow model with non-smooth metric interaction: well-posedness and micro-macro limit, Commun. Math. Sci., 15 (2017), 261-287.  doi: 10.4310/CMS.2017.v15.n1.a12.

[8]

K. Han, T. Yaob and T. L. Friesz, Lagrangian-based hydrodynamic model: Freeway traffic estimation, Preprint, arXiv: 1211.4619v1, 2012.

[9]

H. Holden and N. H. Risebro, Front Tracking for Hyperbolic Conservation Laws, Springer-Verlag, New York, 2015, Second edition. doi: 10.1007/978-3-662-47507-2.

[10]

H. Holden and N. H. Risebro. Follow-the-leader models can be viewed as a numerical approximation to the Lighthill-Whitham-Richards model for traffic flow. Preprint, arXiv: 1702.01718, 2017.

[11]

M. J. Lighthill and G. B. Whitham, Kinematic waves. II. A theory of traffic flow on long crowded roads, Proc. Roy. Soc. (London), Series A, 229 (1955), 317-345.  doi: 10.1098/rspa.1955.0089.

[12]

P. I. Richards, Shockwaves on the highway, Operations Research, 4 (1956), 42-51.  doi: 10.1287/opre.4.1.42.

[13]

E. Rossi, A justification of a LWR model based on a follow the leader description, Discrete Cont. Dyn. Syst. Series S, 7 (2014), 579-591.  doi: 10.3934/dcdss.2014.7.579.

[1]

Helge Holden, Nils Henrik Risebro. Follow-the-Leader models can be viewed as a numerical approximation to the Lighthill-Whitham-Richards model for traffic flow. Networks and Heterogeneous Media, 2018, 13 (3) : 409-421. doi: 10.3934/nhm.2018018

[2]

Raimund Bürger, Christophe Chalons, Rafael Ordoñez, Luis Miguel Villada. A multiclass Lighthill-Whitham-Richards traffic model with a discontinuous velocity function. Networks and Heterogeneous Media, 2021, 16 (2) : 187-219. doi: 10.3934/nhm.2021004

[3]

Wen Shen. Traveling wave profiles for a Follow-the-Leader model for traffic flow with rough road condition. Networks and Heterogeneous Media, 2018, 13 (3) : 449-478. doi: 10.3934/nhm.2018020

[4]

Jérôme Fehrenbach, Jacek Narski, Jiale Hua, Samuel Lemercier, Asja Jelić, Cécile Appert-Rolland, Stéphane Donikian, Julien Pettré, Pierre Degond. Time-delayed follow-the-leader model for pedestrians walking in line. Networks and Heterogeneous Media, 2015, 10 (3) : 579-608. doi: 10.3934/nhm.2015.10.579

[5]

Marco Di Francesco, Graziano Stivaletta. Convergence of the follow-the-leader scheme for scalar conservation laws with space dependent flux. Discrete and Continuous Dynamical Systems, 2020, 40 (1) : 233-266. doi: 10.3934/dcds.2020010

[6]

Elena Rossi. A justification of a LWR model based on a follow the leader description. Discrete and Continuous Dynamical Systems - S, 2014, 7 (3) : 579-591. doi: 10.3934/dcdss.2014.7.579

[7]

Wen Shen. Traveling waves for conservation laws with nonlocal flux for traffic flow on rough roads. Networks and Heterogeneous Media, 2019, 14 (4) : 709-732. doi: 10.3934/nhm.2019028

[8]

Pierre Degond, Sophie Hecht, Nicolas Vauchelet. Incompressible limit of a continuum model of tissue growth for two cell populations. Networks and Heterogeneous Media, 2020, 15 (1) : 57-85. doi: 10.3934/nhm.2020003

[9]

Seung-Yeal Ha, Myeongju Kang, Bora Moon. Uniform-in-time continuum limit of the lattice Winfree model and emergent dynamics. Kinetic and Related Models, 2021, 14 (6) : 1003-1033. doi: 10.3934/krm.2021036

[10]

Gabriella Bretti, Roberto Natalini, Benedetto Piccoli. Numerical approximations of a traffic flow model on networks. Networks and Heterogeneous Media, 2006, 1 (1) : 57-84. doi: 10.3934/nhm.2006.1.57

[11]

Gabriella Bretti, Roberto Natalini, Benedetto Piccoli. Fast algorithms for the approximation of a traffic flow model on networks. Discrete and Continuous Dynamical Systems - B, 2006, 6 (3) : 427-448. doi: 10.3934/dcdsb.2006.6.427

[12]

Wen Shen, Karim Shikh-Khalil. Traveling waves for a microscopic model of traffic flow. Discrete and Continuous Dynamical Systems, 2018, 38 (5) : 2571-2589. doi: 10.3934/dcds.2018108

[13]

Michael Herty, J.-P. Lebacque, S. Moutari. A novel model for intersections of vehicular traffic flow. Networks and Heterogeneous Media, 2009, 4 (4) : 813-826. doi: 10.3934/nhm.2009.4.813

[14]

Ángela Jiménez-Casas, Aníbal Rodríguez-Bernal. Linear model of traffic flow in an isolated network. Conference Publications, 2015, 2015 (special) : 670-677. doi: 10.3934/proc.2015.0670

[15]

Xiaoming Wang. On the coupled continuum pipe flow model (CCPF) for flows in karst aquifer. Discrete and Continuous Dynamical Systems - B, 2010, 13 (2) : 489-501. doi: 10.3934/dcdsb.2010.13.489

[16]

Alberto Bressan, Khai T. Nguyen. Conservation law models for traffic flow on a network of roads. Networks and Heterogeneous Media, 2015, 10 (2) : 255-293. doi: 10.3934/nhm.2015.10.255

[17]

Veronika Schleper. A hybrid model for traffic flow and crowd dynamics with random individual properties. Mathematical Biosciences & Engineering, 2015, 12 (2) : 393-413. doi: 10.3934/mbe.2015.12.393

[18]

Emiliano Cristiani, Fabio S. Priuli. A destination-preserving model for simulating Wardrop equilibria in traffic flow on networks. Networks and Heterogeneous Media, 2015, 10 (4) : 857-876. doi: 10.3934/nhm.2015.10.857

[19]

Tong Li. Well-posedness theory of an inhomogeneous traffic flow model. Discrete and Continuous Dynamical Systems - B, 2002, 2 (3) : 401-414. doi: 10.3934/dcdsb.2002.2.401

[20]

Caterina Balzotti, Simone Göttlich. A two-dimensional multi-class traffic flow model. Networks and Heterogeneous Media, 2021, 16 (1) : 69-90. doi: 10.3934/nhm.2020034

2020 Impact Factor: 1.392

Metrics

  • PDF downloads (142)
  • HTML views (111)
  • Cited by (7)

Other articles
by authors

[Back to Top]