We construct a family of partially hyperbolic skew-product diffeomorphisms on $\mathbb{T}^3$ that are robustly transitive and admit two physical measures with intermingled basins. In particular, all these diffeomorphisms are not topologically mixing. Moreover, every such example exhibits a dichotomy under perturbation: every perturbation of such example either has a unique physical measure and is robustly topologically mixing, or has two physical measures with intermingled basins.
Citation: |
F. Abdenur
and S. Crovisier
, Transitivity and topological mixing for $C^1$ diffeomorphisms, in Essays in Mathematics and Its Applications, Springer, Heidelberg, (2012)
, 1-16.
doi: 10.1007/978-3-642-28821-0_1.![]() ![]() ![]() |
|
J. F. Alves
, C. Bonatti
and M. Viana
, SRB measures for partially hyperbolic diffeomorphisms whose central direction is mostly expanding, Invent. Math., 140 (2000)
, 351-398.
doi: 10.1007/s002220000057.![]() ![]() ![]() |
|
M. Anderson
, Robust ergodic properties in partially hyperbolic dynamics, Trans. Amer. Math. Soc., 362 (2010)
, 1831-1867.
doi: 10.1090/S0002-9947-09-05027-2.![]() ![]() ![]() |
|
P. G. Barrientos
, Y. Ki
and A. Raibekas
, Symbolic blender-horseshoes and applications, Nonlinearity, 27 (2014)
, 2805-2839.
doi: 10.1088/0951-7715/27/12/2805.![]() ![]() ![]() |
|
C. Bonatti
and L. J. Díaz
, Persistent nonhyperbolic transitive diffeomorphisms, Ann. of Math.(2), 143 (1996)
, 357-396.
doi: 10.2307/2118647.![]() ![]() ![]() |
|
C. Bonatti
and L. J. Díaz
, Robust heterodimensional cycles and $C^1$-generic dynamics, J. Inst. Math. Jussieu, 7 (2008)
, 469-525.
doi: 10.1017/S1474748008000030.![]() ![]() ![]() |
|
C. Bonatti
and L. J. Díaz
, Abundance of $C^1$ -robust homoclinic tangencies, Trans. Amer. Math. Soc., 364 (2012)
, 5111-5148.
doi: 10.1090/S0002-9947-2012-05445-6.![]() ![]() ![]() |
|
C. Bonatti
, L. J. Díaz
and R. Ures
, Minimality of strong stable and unstable foliations for partially hyperbolic diffeomorphisms, J. Inst. Math. Jussieu, 1 (2002)
, 513-541.
doi: 10.1017/S1474748002000142.![]() ![]() ![]() |
|
C. Bonatti
, L. J. Díaz
and M. Viana
, Dynamics Beyond Uniform Hyperbolicity, Encyclopaedia Math. Sci., Springer-Verlag, (2005)
.
![]() ![]() |
|
C. Bonatti and R. Potrie, Many intermingled basins in dimension 3, preprint, arXiv: 1603.03803v1.
![]() |
|
C. Bonatti
and M. Viana
, SRB measures for partially hyperbolic diffeomorphisms whose central direction is mostly contracting, Isreal J. of Math., 115 (2000)
, 157-193.
doi: 10.1007/BF02810585.![]() ![]() ![]() |
|
R. Bowen
and D. Ruelle
, The ergodic theory of Axiom A flows, Invent. Math., 29 (1975)
, 181-202.
doi: 10.1007/BF01389848.![]() ![]() ![]() |
|
K. Burns
, F. R. Hertz
, J. R. Hertz
, A. Talitskaya
and R. Ures
, Density of accessibility for partially hyperbolic diffeomorphisms with one-dimensional center, Discrete Contin. Dyn. Syst., 22 (2008)
, 75-88.
doi: 10.3934/dcds.2008.22.75.![]() ![]() ![]() |
|
D. Dolgopyat
, M. Viana
and J. Yang
, Geometric and measure-theoretical structures of maps with mostly contracting center, Commun. Math. Phys., 341 (2016)
, 991-1014.
doi: 10.1007/s00220-015-2554-y.![]() ![]() ![]() |
|
S. Gan and Y. Shi, Topological mixing for Kan's map, In preparation.
![]() |
|
M. Hirsch
, C. Pugh
and M. Shub
, Invariant Manifolds, Lecture Notes in Mathmatics, Springer-Verlag, Berlin, (1977)
.
![]() ![]() |
|
A. J. Homburg
and M. Nassiri
, Robust minimality of iterated function systems with two generators, Ergod. Th. & Dynam. Sys., 34 (2014)
, 1914-1929.
doi: 10.1017/etds.2013.34.![]() ![]() ![]() |
|
J. E. Hutchinson
, Fractals and self-similarity, Indiana Univ. Math. J., 30 (1981)
, 713-747.
doi: 10.1512/iumj.1981.30.30055.![]() ![]() ![]() |
|
Y. S. Ilyashenko
, V. A. Kleptsyn
and P. Saltykov
, Openness of the set of boundary preserving maps of an annulus with intermingled attracting basins, J. Fixed Point Theory Appl., 3 (2008)
, 449-463.
doi: 10.1007/s11784-008-0088-z.![]() ![]() ![]() |
|
I. Kan
, Open sets of diffeomorphisms having two attractors, each with an everywhere dense basin, Bull. Amer. Math. Soc. (N.S.), 31 (1994)
, 68-74.
doi: 10.1090/S0273-0979-1994-00507-5.![]() ![]() ![]() |
|
V. A. Kleptsyn
and P. S. Saltykov
, On $C^2$ -stable effects of intermingled basins of attractors in classes of boundary-preserving maps, Trans. Moscow Math. Soc., (2011)
, 193-217.
doi: 10.1090/s0077-1554-2012-00196-4.![]() ![]() ![]() |
|
S. W. McDonald
, C. Grebogi
, E. Ott
and J. A. Yorke
, Fractal basin boundaries, Phys. D., 17 (1985)
, 125-153.
doi: 10.1016/0167-2789(85)90001-6.![]() ![]() ![]() |
|
M. Nassiri
and E. Pujals
, Robust transitivity in Hamiltonian dynamics, Ann. Sci. Éc. Norm. Supér., 45 (2012)
, 191-239.
doi: 10.24033/asens.2164.![]() ![]() ![]() |
|
A. Okunev
, Milnor attractors of skew products with the fiber a circle, J. Dyn. Control Syst., 23 (2017)
, 421-433.
doi: 10.1007/s10883-016-9334-7.![]() ![]() ![]() |
|
J. Palis
, A global perspective for non-conservative dynamics, Ann. Inst. H. Poincaré Anal. Non Linéaire, 22 (2005)
, 485-507.
doi: 10.1016/j.anihpc.2005.01.001.![]() ![]() ![]() |
|
Y. Pesin
and Y. Sinai
, Gibbs measures for partially hyperbolic attractors, Ergod. Th. & Dynam. Sys., 2 (1982)
, 417-438.
doi: 10.1017/S014338570000170X.![]() ![]() ![]() |
|
D. Ruelle
, A measure associated with Axiom A attractors, Amer. J. Math., 98 (1976)
, 619-654.
doi: 10.2307/2373810.![]() ![]() ![]() |
|
Ya. Sinai
, Gibbs measures in ergodic theory, Russian Math. Surveys, 27 (1972)
, 21-64.
![]() ![]() |
|
R. Ures and C. H. Vasquez, On the robustness of intermingled basins preprint, arXiv: 1503.07155v2.
doi: 10.1017/etds.2016.33.![]() ![]() |
|
M. Viana
and J. Yang
, Physical measures and absolute continuity for one-dimensional center direction, Ann. Inst. H. Poincaré Anal. Non Linéaire, 30 (2013)
, 845-877.
doi: 10.1016/j.anihpc.2012.11.002.![]() ![]() ![]() |
|
J. Yang, Entropy along expanding foliations, preprint, arXiv: 1601.05504v1.
![]() |
Perturbation domains.
Construction of blender-horseshoe.
Robustly transitive Kan's example on