
-
Previous Article
Soliton solutions for the elastic metric on spaces of curves
- DCDS Home
- This Issue
-
Next Article
On the Cauchy problem for the nonlinear semi-relativistic equation in Sobolev spaces
Uniform hyperbolicity in nonflat billiards
Institut Fourier, Université Grenoble Alpes, 100, rue des mathématiques, 38610 Gières, France |
Uniform hyperbolicity is a strong chaotic property which holds, in particular, for Sinai billiards. In this paper, we consider the case of a nonflat billiard, that is, a Riemannian surface with boundary. Each trajectory follows the geodesic flow in the interior of the billiard, and bounces when it meets the boundary. We give a sufficient condition for a nonflat billiard to be uniformly hyperbolic. As a particular case, we obtain a new criterion to show that a closed surface has an Anosov geodesic flow.
References:
[1] |
V. I. Arnold and A. Avez,
Problémes Ergodiques de la Mécanique Classique, Monographies Internationales de Mathématiques Modernes, No. 9, Gauthier-Villars, Éditeur, Paris, 1967. |
[2] |
V. Baladi, M. Demers and C. Liverani, Exponential decay of correlations for finite horizon Sinai billiard flows, Inventiones mathematicae, (2017), 1-139, arXiv: 1506.02836.
doi: 10.1007/s00222-017-0745-1. |
[3] |
M. Bauer and A. Lopes,
A billiard in the hyperbolic plane with decay of correlation of type n-2, Discrete Contin. Dynam. Systems, 3 (1997), 107-116.
|
[4] |
N. Chernov and R. Markarian, Chaotic Billiards, vol. 127 of Mathematical Surveys and Monographs, American Mathematical Society, Providence, RI, 2006, URL http://dx.doi.org/10.1090/surv/127. |
[5] |
D. Dolgopyat, On decay of correlations in Anosov flows, Ann. of Math. (2), 147 (1998), 357-390, URL http://dx.doi.org/10.2307/121012. |
[6] |
V. J. Donnay and C. Pugh,
Anosov geodesic flows for embedded surfaces, Asterisque, 287 (2003), 61-69.
|
[7] |
P. Eberlein, When is a geodesic flow of Anosov type? Ⅰ, Ⅱ, J. Differential Geometry, 8 (1973), 437-463; Ibid., 8 (1973), 565-577.
doi: 10.4310/jdg/1214431801. |
[8] |
B. Gutkin, U. Smilansky and E. Gutkin, Hyperbolic billiards on surfaces of constant curvature, Comm. Math. Phys., 208 (1999), 65-90, URL http://dx.doi.org/10.1007/s002200050748. |
[9] |
J. Hadamard,
Les surfaces à courbures opposées et leurs lignes géodésique, J. Math. pures appl., 4 (1898), 27-73.
|
[10] |
T. J. Hunt and R. S. MacKay, Anosov parameter values for the triple linkage and a physical system with a uniformly chaotic attractor, Nonlinearity, 16 (2003), 1499-1510, URL http://dx.doi.org/10.1088/0951-7715/16/4/318. |
[11] |
A. Katok and B. Hasselblatt, Introduction to the Modern Theory of Dynamical Systems, vol. 54 of Encyclopedia of Mathematics and its Applications, Cambridge University Press, Cambridge, 1995, URL http://dx.doi.org/10.1017/CBO9780511809187. |
[12] |
W. Klingenberg,
Riemannian manifolds with geodesic flow of Anosov type, Ann. of Math. (2), 99 (1974), 1-13.
doi: 10.2307/1971011. |
[13] |
S. Kobayashi and K. Nomizu, Foundations of Differential Geometry. Vol Ⅰ, Interscience Publishers, a division of John Wiley & Sons, New York-London, 1963. |
[14] |
M. Kourganoff, Anosov geodesic flows, billiards and linkages, Comm. Math. Phys. , 344 (2016), 831-856, URL http://dx.doi.org/10.1007/s00220-016-2646-3. |
[15] |
M. Kourganoff, Embedded surfaces with Anosov geodesic flows, approximating spherical billiards, arXiv preprint. |
[16] |
A. Krámli, N. Simányi and D. Szász, Dispersing billiards without focal points on surfaces are ergodic, Comm. Math. Phys., 125 (1989), 439-457, URL http://projecteuclid.org/euclid.cmp/1104179528. |
[17] |
C. Liverani, On contact Anosov flows, Ann. of Math. (2), 159 (2004), 1275-1312, URL http://dx.doi.org/10.4007/annals.2004.159.1275. |
[18] |
M. Magalhães and M. Pollicott,
Geometry and dynamics of planar linkages, Communications in Mathematical Physics, 317 (2013), 615-634.
doi: 10.1007/s00220-012-1521-0. |
[19] |
G. P. Paternain, Geodesic Flows, vol. 180 of Progress in Mathematics, Birkhäuser Boston,
Inc., Boston, MA, 1999, URL http://dx.doi.org/10.1007/978-1-4612-1600-1. |
[20] |
C. Pugh and M. Shub,
Ergodicity of Anosov actions, Invent. Math., 15 (1972), 1-23.
doi: 10.1007/BF01418639. |
[21] |
J. G. Sinaĭ,
Dynamical systems with elastic reflections. Ergodic properties of dispersing billiards, Uspehi Mat. Nauk, 25 (1970), 141-192.
|
[22] |
A. Vetier, Sinaĭ billiard in potential field (construction of stable and unstable fibers), in Limit theorems in probability and statistics, Vol. Ⅰ, Ⅱ (Veszprém, 1982), vol. 36 of Colloq. Math. Soc. J´anos Bolyai, North-Holland, Amsterdam, 1984, 1079-1146. |
[23] |
M. Wojtkowski, Invariant families of cones and Lyapunov exponents, Ergodic Theory Dynam. Systems, 5 (1985), 145-161, URL http://dx.doi.org/10.1017/S0143385700002807. |
[24] |
P. Zhang, Convex billiards on convex spheres, Ann. Inst. H. Poincaré Anal. Non Linéaire, 34 (2017), 793-816, URL http://dx.doi.org/10.1016/j.anihpc.2016.07.001. |
show all references
References:
[1] |
V. I. Arnold and A. Avez,
Problémes Ergodiques de la Mécanique Classique, Monographies Internationales de Mathématiques Modernes, No. 9, Gauthier-Villars, Éditeur, Paris, 1967. |
[2] |
V. Baladi, M. Demers and C. Liverani, Exponential decay of correlations for finite horizon Sinai billiard flows, Inventiones mathematicae, (2017), 1-139, arXiv: 1506.02836.
doi: 10.1007/s00222-017-0745-1. |
[3] |
M. Bauer and A. Lopes,
A billiard in the hyperbolic plane with decay of correlation of type n-2, Discrete Contin. Dynam. Systems, 3 (1997), 107-116.
|
[4] |
N. Chernov and R. Markarian, Chaotic Billiards, vol. 127 of Mathematical Surveys and Monographs, American Mathematical Society, Providence, RI, 2006, URL http://dx.doi.org/10.1090/surv/127. |
[5] |
D. Dolgopyat, On decay of correlations in Anosov flows, Ann. of Math. (2), 147 (1998), 357-390, URL http://dx.doi.org/10.2307/121012. |
[6] |
V. J. Donnay and C. Pugh,
Anosov geodesic flows for embedded surfaces, Asterisque, 287 (2003), 61-69.
|
[7] |
P. Eberlein, When is a geodesic flow of Anosov type? Ⅰ, Ⅱ, J. Differential Geometry, 8 (1973), 437-463; Ibid., 8 (1973), 565-577.
doi: 10.4310/jdg/1214431801. |
[8] |
B. Gutkin, U. Smilansky and E. Gutkin, Hyperbolic billiards on surfaces of constant curvature, Comm. Math. Phys., 208 (1999), 65-90, URL http://dx.doi.org/10.1007/s002200050748. |
[9] |
J. Hadamard,
Les surfaces à courbures opposées et leurs lignes géodésique, J. Math. pures appl., 4 (1898), 27-73.
|
[10] |
T. J. Hunt and R. S. MacKay, Anosov parameter values for the triple linkage and a physical system with a uniformly chaotic attractor, Nonlinearity, 16 (2003), 1499-1510, URL http://dx.doi.org/10.1088/0951-7715/16/4/318. |
[11] |
A. Katok and B. Hasselblatt, Introduction to the Modern Theory of Dynamical Systems, vol. 54 of Encyclopedia of Mathematics and its Applications, Cambridge University Press, Cambridge, 1995, URL http://dx.doi.org/10.1017/CBO9780511809187. |
[12] |
W. Klingenberg,
Riemannian manifolds with geodesic flow of Anosov type, Ann. of Math. (2), 99 (1974), 1-13.
doi: 10.2307/1971011. |
[13] |
S. Kobayashi and K. Nomizu, Foundations of Differential Geometry. Vol Ⅰ, Interscience Publishers, a division of John Wiley & Sons, New York-London, 1963. |
[14] |
M. Kourganoff, Anosov geodesic flows, billiards and linkages, Comm. Math. Phys. , 344 (2016), 831-856, URL http://dx.doi.org/10.1007/s00220-016-2646-3. |
[15] |
M. Kourganoff, Embedded surfaces with Anosov geodesic flows, approximating spherical billiards, arXiv preprint. |
[16] |
A. Krámli, N. Simányi and D. Szász, Dispersing billiards without focal points on surfaces are ergodic, Comm. Math. Phys., 125 (1989), 439-457, URL http://projecteuclid.org/euclid.cmp/1104179528. |
[17] |
C. Liverani, On contact Anosov flows, Ann. of Math. (2), 159 (2004), 1275-1312, URL http://dx.doi.org/10.4007/annals.2004.159.1275. |
[18] |
M. Magalhães and M. Pollicott,
Geometry and dynamics of planar linkages, Communications in Mathematical Physics, 317 (2013), 615-634.
doi: 10.1007/s00220-012-1521-0. |
[19] |
G. P. Paternain, Geodesic Flows, vol. 180 of Progress in Mathematics, Birkhäuser Boston,
Inc., Boston, MA, 1999, URL http://dx.doi.org/10.1007/978-1-4612-1600-1. |
[20] |
C. Pugh and M. Shub,
Ergodicity of Anosov actions, Invent. Math., 15 (1972), 1-23.
doi: 10.1007/BF01418639. |
[21] |
J. G. Sinaĭ,
Dynamical systems with elastic reflections. Ergodic properties of dispersing billiards, Uspehi Mat. Nauk, 25 (1970), 141-192.
|
[22] |
A. Vetier, Sinaĭ billiard in potential field (construction of stable and unstable fibers), in Limit theorems in probability and statistics, Vol. Ⅰ, Ⅱ (Veszprém, 1982), vol. 36 of Colloq. Math. Soc. J´anos Bolyai, North-Holland, Amsterdam, 1984, 1079-1146. |
[23] |
M. Wojtkowski, Invariant families of cones and Lyapunov exponents, Ergodic Theory Dynam. Systems, 5 (1985), 145-161, URL http://dx.doi.org/10.1017/S0143385700002807. |
[24] |
P. Zhang, Convex billiards on convex spheres, Ann. Inst. H. Poincaré Anal. Non Linéaire, 34 (2017), 793-816, URL http://dx.doi.org/10.1016/j.anihpc.2016.07.001. |





[1] |
Rafael O. Ruggiero. Shadowing of geodesics, weak stability of the geodesic flow and global hyperbolic geometry. Discrete and Continuous Dynamical Systems, 2006, 14 (2) : 365-383. doi: 10.3934/dcds.2006.14.365 |
[2] |
Zhenqi Jenny Wang. The twisted cohomological equation over the geodesic flow. Discrete and Continuous Dynamical Systems, 2019, 39 (7) : 3923-3940. doi: 10.3934/dcds.2019158 |
[3] |
Dieter Mayer, Fredrik Strömberg. Symbolic dynamics for the geodesic flow on Hecke surfaces. Journal of Modern Dynamics, 2008, 2 (4) : 581-627. doi: 10.3934/jmd.2008.2.581 |
[4] |
Anke D. Pohl. Symbolic dynamics for the geodesic flow on two-dimensional hyperbolic good orbifolds. Discrete and Continuous Dynamical Systems, 2014, 34 (5) : 2173-2241. doi: 10.3934/dcds.2014.34.2173 |
[5] |
Vladimir S. Matveev and Petar J. Topalov. Metric with ergodic geodesic flow is completely determined by unparameterized geodesics. Electronic Research Announcements, 2000, 6: 98-104. |
[6] |
Bendong Lou. Spiral rotating waves of a geodesic curvature flow on the unit sphere. Discrete and Continuous Dynamical Systems - B, 2012, 17 (3) : 933-942. doi: 10.3934/dcdsb.2012.17.933 |
[7] |
Jonatan Lenells. Weak geodesic flow and global solutions of the Hunter-Saxton equation. Discrete and Continuous Dynamical Systems, 2007, 18 (4) : 643-656. doi: 10.3934/dcds.2007.18.643 |
[8] |
Miroslav KolÁŘ, Michal BeneŠ, Daniel ŠevČoviČ. Area preserving geodesic curvature driven flow of closed curves on a surface. Discrete and Continuous Dynamical Systems - B, 2017, 22 (10) : 3671-3689. doi: 10.3934/dcdsb.2017148 |
[9] |
Pablo D. Carrasco, Túlio Vales. A symmetric Random Walk defined by the time-one map of a geodesic flow. Discrete and Continuous Dynamical Systems, 2021, 41 (6) : 2891-2905. doi: 10.3934/dcds.2020390 |
[10] |
Dubi Kelmer, Hee Oh. Shrinking targets for the geodesic flow on geometrically finite hyperbolic manifolds. Journal of Modern Dynamics, 2021, 17: 401-434. doi: 10.3934/jmd.2021014 |
[11] |
Gabriela P. Ovando. The geodesic flow on nilpotent Lie groups of steps two and three. Discrete and Continuous Dynamical Systems, 2022, 42 (1) : 327-352. doi: 10.3934/dcds.2021119 |
[12] |
Laurence Guillot, Maïtine Bergounioux. Existence and uniqueness results for the gradient vector flow and geodesic active contours mixed model. Communications on Pure and Applied Analysis, 2009, 8 (4) : 1333-1349. doi: 10.3934/cpaa.2009.8.1333 |
[13] |
Artur O. Lopes, Vladimir A. Rosas, Rafael O. Ruggiero. Cohomology and subcohomology problems for expansive, non Anosov geodesic flows. Discrete and Continuous Dynamical Systems, 2007, 17 (2) : 403-422. doi: 10.3934/dcds.2007.17.403 |
[14] |
Ítalo Melo, Sergio Romaña. Contributions to the study of Anosov geodesic flows in non-compact manifolds. Discrete and Continuous Dynamical Systems, 2020, 40 (9) : 5149-5171. doi: 10.3934/dcds.2020223 |
[15] |
Nicolas Bedaride. Entropy of polyhedral billiard. Discrete and Continuous Dynamical Systems, 2007, 19 (1) : 89-102. doi: 10.3934/dcds.2007.19.89 |
[16] |
Pavel Bachurin, Konstantin Khanin, Jens Marklof, Alexander Plakhov. Perfect retroreflectors and billiard dynamics. Journal of Modern Dynamics, 2011, 5 (1) : 33-48. doi: 10.3934/jmd.2011.5.33 |
[17] |
David Cowan. A billiard model for a gas of particles with rotation. Discrete and Continuous Dynamical Systems, 2008, 22 (1&2) : 101-109. doi: 10.3934/dcds.2008.22.101 |
[18] |
Mason A. Porter, Richard L. Liboff. The radially vibrating spherical quantum billiard. Conference Publications, 2001, 2001 (Special) : 310-318. doi: 10.3934/proc.2001.2001.310 |
[19] |
David Cowan. Rigid particle systems and their billiard models. Discrete and Continuous Dynamical Systems, 2008, 22 (1&2) : 111-130. doi: 10.3934/dcds.2008.22.111 |
[20] |
Dmitry Treschev. A locally integrable multi-dimensional billiard system. Discrete and Continuous Dynamical Systems, 2017, 37 (10) : 5271-5284. doi: 10.3934/dcds.2017228 |
2020 Impact Factor: 1.392
Tools
Metrics
Other articles
by authors
[Back to Top]