In this paper, weak uniqueness of hypoelliptic stochastic differential equation with Hölder drift is proved when the Hölder exponent is strictly greater than 1/3. This result then "extends" to a weak framework the previous works [
The approach is based on martingale problem formulation of Stroock and Varadhan and so on smoothing properties of the associated PDE which is, in the current setting, degenerate.
Citation: |
L. Beck, F. Flandoli, M. Gubinelli and M. Maurelli, Stochastic ODEs and stochastic linear PDEs with critical drift: regularity, duality and uniqueness, arXiv:1401.1530 [math]
![]() |
|
G. Cannizzaro and K. Chouk, Multidimensional SDEs with singular drift and universal construction of the polymer measure with white noise potential, To appear in Annals of Probability, arXiv:1501.04751 [math]
![]() |
|
R. Catellier
and M. Gubinelli
, Averaging along irregular curves and regularisation of ODEs, Stochastic Processes and their Applications, 126 (2016)
, 2323-2366.
doi: 10.1016/j.spa.2016.02.002.![]() ![]() ![]() |
|
P. E. Chaudru de Raynal
, Strong existence and uniqueness for degenerate SDE with Hölder drift, Annales de l'Institut Henri Poincaré, Probabilités et Statistiques, 53 (2017)
, 259-286.
doi: 10.1214/15-AIHP716.![]() ![]() ![]() |
|
F. Delarue
and R. Diel
, Rough paths and 1d SDE with a time dependent distributional drift: Application to polymers, Probability Theory and Related Fields, 165 (2016)
, 1-63.
doi: 10.1007/s00440-015-0626-8.![]() ![]() ![]() |
|
F. Delarue
and F. Flandoli
, The transition point in the zero noise limit for a 1d Peano example, Discrete and Continuous Dynamical Systems, 34 (2014)
, 4071-4083.
doi: 10.3934/dcds.2014.34.4071.![]() ![]() ![]() |
|
F. Delarue
and S. Menozzi
, Density estimates for a random noise propagating through a chain of differential equations, Journal of Functional Analysis, 259 (2010)
, 1577-1630.
doi: 10.1016/j.jfa.2010.05.002.![]() ![]() ![]() |
|
M. Di Francesco
and S. Polidoro
, Schauder estimates, Harnack inequality and Gaussian lower bound for Kolmogorov-type operators in non-divergence form, Advances in Differential Equations, 11 (2006)
, 1261-1320.
![]() ![]() |
|
R. J. DiPerna
and P.-L. Lions
, Ordinary differential equations, transport theory and Sobolev spaces, Inventiones Mathematicae, 98 (1989)
, 511-547.
doi: 10.1007/BF01393835.![]() ![]() ![]() |
|
E. Fedrizzi, F. Flandoli, E. Priola and J. Vovelle, Regularity of stochastic kinetic equations,
Electronic Journal of Probability, 22 (2017), 42pp.
![]() ![]() |
|
F. Flandoli
, E. Issoglio
and F. Russo
, Multidimensional stochastic differential equations with distributional drift, Transactions of the American Mathematical Society, 369 (2017)
, 1665-1688.
![]() ![]() |
|
F. Flandoli,
Random Perturbation of PDEs and Fluid Dynamic Models, vol. 2015 of Lecture Notes in Mathematics, Springer, Heidelberg, 2011, Lectures from the 40th Probability Summer School held in Saint-Flour, 2010.
![]() ![]() |
|
A. Friedman, Partial Differential Equations of Parabolic Type, Prentice-Hall Inc., Englewood Cliffs, N.J., 1964.
![]() ![]() |
|
M. Hairer
, Introduction to regularity structures, Brazilian Journal of Probability and Statistics, 29 (2015)
, 175-210.
doi: 10.1214/14-BJPS241.![]() ![]() ![]() |
|
L. Hörmander
, Hypoelliptic second order differential equations, Acta Mathematica, 119 (1967)
, 147-171.
doi: 10.1007/BF02392081.![]() ![]() ![]() |
|
A. Kolmogorov
, Zufällige Bewegungen. (Zur Theorie der Brownschen Bewegung.)., Ann. of Math., Ⅱ. Ser., 35 (1934)
, 116-117.
doi: 10.2307/1968123.![]() ![]() ![]() |
|
N. V. Krylov
and M. Röckner
, Strong solutions of stochastic equations with singular time dependent drift, Probability Theory and Related Fields, 131 (2005)
, 154-196.
doi: 10.1007/s00440-004-0361-z.![]() ![]() ![]() |
|
H. P. McKean Jr.
and I. M. Singer
, Curvature and the eigenvalues of the Laplacian, Journal of Differential Geometry, 1 (1967)
, 43-69.
doi: 10.4310/jdg/1214427880.![]() ![]() ![]() |
|
S. Menozzi
, Parametrix techniques and martingale problems for some degenerate Kolmogorov equations, Electronic Communications in Probability, 16 (2011)
, 234-250.
doi: 10.1214/ECP.v16-1619.![]() ![]() ![]() |
|
S. Menozzi
, Martingale problems for some degenerate Kolmogorov equations, Stochastic Processes and their Applications, (2017)
.
doi: 10.1016/j.spa.2017.06.001.![]() ![]() |
|
D. W. Stroock and S. R. S. Varadhan,
Multidimensional Diffusion Processes, vol. 233 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], Springer-Verlag, Berlin, 1979.
![]() ![]() |
|
A. J. Veretennikov
, Strong solutions and explicit formulas for solutions of stochastic integral equations, Matematicheskiĭ Sbornik. Novaya Seriya, 111 (1980)
, 434-452,480.
![]() ![]() |
|
F. Wang
and X. Zhang
, Degenerate SDE with Hölder-Dini Drift and Non-Lipschitz Noise Coefficient, SIAM Journal on Mathematical Analysis, 48 (2016)
, 2189-2226.
doi: 10.1137/15M1023671.![]() ![]() ![]() |
|
X. Zhang
, Strong solutions of SDES with singular drift and Sobolev diffusion coefficients, Stochastic Processes and their Applications, 115 (2005)
, 1805-1818.
doi: 10.1016/j.spa.2005.06.003.![]() ![]() ![]() |
|
X. Zhang, Stochastic Hamiltonian flows with singular coefficients, arXiv:1606.04360 [math]
![]() |
|
A. K. Zvonkin
, A transformation of the phase space of a diffusion process that will remove the drift, Mat. Sb. (N.S.), 93 (1974)
, 129-149,152.
![]() ![]() |