In this paper, we consider a Maxwell-Chern-Simons model with anomalous magnetic moment. Our main goal is to show the existence and uniqueness of topological type solutions to this problem on a flat two torus for any configuration of vortex points. Moreover, we also discuss about the stability of topological solutions.
Citation: |
A. A. Abrikosov
, On the magnetic properties of superconductors of the second group, Soviet Phys. JETP, 5 (1957)
, 1174-1182.
![]() |
|
D. Bartolucci
, Y. Lee
, C. S. Lin
and M. Onodera
, Asymptotic analysis of solutions to a gauged $O(3)$ sigma model, Ann. Inst. H. Poincaré Anal. Non Linéaire, 32 (2015)
, 651-685.
doi: 10.1016/j.anihpc.2014.03.001.![]() ![]() ![]() |
|
F. S. A. Cavalcante
, M. S. Cunha
and C. A. S. Almeida
, Vortices in a nonminimal Maxwell-Chern-Simons O(3) sigma model, Phys. Lett. B, 475 (2000)
, 315-323.
doi: 10.1016/S0370-2693(00)00077-0.![]() ![]() ![]() |
|
D. Chae
and O. Y. Imanuvilov
, The existence of non-topological multivortex solutions in the relativistic self-dual Chern-Simons theory, Commun. Math. Phys., 215 (2000)
, 119-142.
doi: 10.1007/s002200000302.![]() ![]() ![]() |
|
D. Chae
and O. Y. Imanuvilov
, Non-topological multivortex solutions to the self-dual Maxwell-Chern-Simons-Higgs systems, J. Funct. Anal., 196 (2002)
, 87-118.
doi: 10.1006/jfan.2002.3988.![]() ![]() ![]() |
|
H. Chan
, C. C. Fu
and C. S. Lin
, Non-topological multivortex solutions to the self-dual Chern-Simons-Higgs equation, Commun. Math. Phys., 231 (2002)
, 189-221.
doi: 10.1007/s00220-002-0691-6.![]() ![]() ![]() |
|
X. Chen
, S. Hastings
, J. McLeod
and Y. Yang
, A nonlinear elliptic equation arising from gauge field theory and cosmology, Proc. R. Soc. Lond. A, 446 (1994)
, 453-478.
doi: 10.1098/rspa.1994.0115.![]() ![]() ![]() |
|
K. Choe
, Self-dual non-topological vortices in a Maxwell-Chern-Simons model with non-minimal coupling, Lett. Math. Phys., 87 (2009)
, 47-65.
doi: 10.1007/s11005-009-0294-7.![]() ![]() ![]() |
|
K. Choe, Uniqueness of the topological multivortex solution in the selfdual Chern-Simons theory,
J. Math. Phys., 46 (2005), 012305, 21pp.
![]() ![]() |
|
K. Choe
, J. Han
, Y. Lee
and C. S. Lin
, Bubbling solutions for the Chern-Simons gauged $O(3)$ sigma model on a torus, Calc. Var. Partial Differential Equations, 54 (2015)
, 1275-1329.
doi: 10.1007/s00526-015-0825-2.![]() ![]() ![]() |
|
H. R. Christiansen
, M. S. Cunha
, J. A. Helayël-Neto
, L. R. U. Manssur
and A. L. M. A. Nogueira
, $N =2$-Maxwell-Chern-Simons model with anomalous magnetic moment coupling via dimensional reduction, Int. J. Mod. Phys. A, 14 (1999)
, 147-159.
doi: 10.1142/S0217751X99000075.![]() ![]() ![]() |
|
H. R. Christiansen
, M. S. Cunha
, J. A. Helayël-Neto
, L. R. U. Manssur
and A. L. M. A. Nogueira
, Self-dual vortices in a Maxwell-Chern-Simons model with non-minimal coupling, Int. J. Mod. Phys. A, 14 (1999)
, 1721-1735.
doi: 10.1142/S0217751X99000877.![]() ![]() ![]() |
|
W. Ding
, J. Jost
, J. Li
, X. Peng
and G. Wang
, Self duality equations for Ginzburg-Landau and Seiberg-Witten type functionals with 6th order potentials, Comm. Math. Phys., 217 (2001)
, 383-407.
doi: 10.1007/s002200100377.![]() ![]() ![]() |
|
G. Dunne,
Self-duality and Chern-Simons theories. Lecture Notes in Physics, Springer, Heidelberg, 1995.
![]() |
|
Y. W. Fan
, Y. Lee
and C. S. Lin
, Mixed type solutions of the SU(3) models on a torus, Comm. Math. Phys., 343 (2016)
, 233-271.
doi: 10.1007/s00220-015-2532-4.![]() ![]() ![]() |
|
D. Gilbarg and N. Trudinger,
Elliptic partial differential equations of second order, Classics in Mathematics, Springer-Verlag, Berlin, 2001.
![]() ![]() |
|
J. Han
and H. Huh
, Self-dual vortices in a Maxwell-Chern-Simons model with non-minimal coupling, Lett. Math. Phys., 82 (2007)
, 9-24.
doi: 10.1007/s11005-007-0193-8.![]() ![]() ![]() |
|
J. Hong
, P. Kim
and P. Pac
, Multivortex solutions of the abelian Chern-Simons-Higgs theory, Phys. Rev. Lett., 64 (1990)
, 2230-2233.
doi: 10.1103/PhysRevLett.64.2230.![]() ![]() ![]() |
|
G.'t Hooft
, A property of electric and magnetic flux in nonabelian gauge theories, Nucl. Phys. B, 153 (1979)
, 141-160.
doi: 10.1016/0550-3213(79)90595-9.![]() ![]() ![]() |
|
R. Jackiw
and E. Weinberg
, Self-dual Chern-Simons vortices, Phys. Rev. Lett., 64 (1990)
, 2234-2237.
doi: 10.1103/PhysRevLett.64.2234.![]() ![]() ![]() |
|
A. Jaffe and C. H. Taubes, Vortices and Monopoles, Birkh$ä$user, Boston, 1980.
![]() ![]() |
|
T. Lee
and H. Min
, Bogomol'nyi equations for solitons in Maxwell-Chern-Simons gauge theories with the magnetic moment interaction term, Phys. Rev. D, 50 (1994)
, 7738-7741.
doi: 10.1103/PhysRevD.50.7738.![]() ![]() |
|
C. Lee
, K. Lee
and H. Min
, Self-dual Maxwell-Chern-Simons solitons, Phys. Lett. B, 252 (1990)
, 79-83.
doi: 10.1016/0370-2693(90)91084-O.![]() ![]() ![]() |
|
B. H. Lee
, C. Lee
and H. Min
, Supersymmetric Chern-Simons vortex systems and fermion zero modes, Phys. Rev. D, 45 (1992)
, 4588-4599.
doi: 10.1103/PhysRevD.45.4588.![]() ![]() ![]() |
|
P. Navrátil
, $N =2$ supersymmetry in a Chern-Simons system with the magnetic moment interaction, Phys. Lett. B, 365 (1996)
, 119-124.
doi: 10.1016/0370-2693(95)01254-0.![]() ![]() ![]() |
|
H. B. Nielsen
and P. Olesen
, Vortex-line models for dual-strings, Nucl. Phys. B, 61 (1973)
, 45-61.
![]() |
|
S. Paul
and A. Khare
, Charged vortices in an abelian Higgs model with Chern-Simons term, Phys. Lett. B, 174 (1986)
, 420-422.
doi: 10.1016/0370-2693(86)91028-2.![]() ![]() ![]() |
|
J. Spruck
and Y. Yang
, The existence of non-topological solitons in the self-dual Chern-Simons theory, Commun. Math. Phys., 149 (1992)
, 361-376.
doi: 10.1007/BF02097630.![]() ![]() ![]() |
|
G. Tarantello
, Selfdual Maxwell-Chern-Simons vortices, Milan J. Math., 72 (2004)
, 29-80.
doi: 10.1007/s00032-004-0030-9.![]() ![]() ![]() |
|
G. Tarantello
, Uniqueness of self-dual periodic Chern-Simons vortices of topological-type, Calc. Var. P.D.E., 29 (2007)
, 191-217.
doi: 10.1007/s00526-006-0062-9.![]() ![]() ![]() |
|
G. Tarantello,
Selfdual gauge field vortices an analytical approach, In Progress in Nonlinear Differential Equations and Their Applications. Birkhäuser, Boston, 2008.
![]() ![]() |
|
M. Torres
, Bogomol'nyi limit for nontopological solitons in a Chern-Simons model with anomalous magnetic moment, Phys. Rev. D, 46 (1992)
, 2295-2298.
doi: 10.1103/PhysRevD.46.R2295.![]() ![]() |
|
Y. Yang,
Solitons in Field Theory and Nonlinear Analysis, Springer Monograph in Mathematics. Springer, New York, 2001.
![]() ![]() |