-
Previous Article
Existence of nonnegative solutions to singular elliptic problems, a variational approach
- DCDS Home
- This Issue
-
Next Article
Pullback attractor and invariant measures for the three-dimensional regularized MHD equations
Well-posedness for the Cauchy problem of the Klein-Gordon-Zakharov system in 2D
Graduate School of Mathematics, Nagoya University, Chikusa-ku, Nagoya, 464-8602, Japan |
This paper is concerned with the Cauchy problem of the Klein-Gordon-Zakharov system with very low regularity initial data. We prove the bilinear estimates which are crucial to get the local in time well-posedness. The estimates are established by the Fourier restriction norm method. We utilize the nonlinear version of the classical Loomis-Whitney inequality.
References:
[1] |
I. Bejenaru, S. Herr, J. Holmer and D. Tataru,
On the 2D Zakharov system with $L^2$ Schrödinger data, Nonlinearity, 22 (2009), 1063-1089.
doi: 10.1088/0951-7715/22/5/007. |
[2] |
I. Bejenaru and S. Herr,
Convolutions of singular measures and applications to the Zakharov system, J. Funct. Anal., 261 (2011), 478-506.
doi: 10.1016/j.jfa.2011.03.015. |
[3] |
I. Bejenaru, S. Herr and D. Tataru,
A convolution estimate for two-dimensional hypersurfaces, Rev. Mat. Iberoam, 26 (2010), 707-728.
|
[4] |
P. M. Bellan, Fundamentals of Plasmas Physics, Cambridge, Cambridge University Press, 2006.
doi: 10.1017/CBO9780511807183.![]() ![]() |
[5] |
J. Bennett, A. Carbery and J. Wright,
A non-linear generalisation of the Loomis-Whitney inequality and applications, Math. Res. Lett., 12 (2005), 443-457.
doi: 10.4310/MRL.2005.v12.n4.a1. |
[6] |
J. Ginibre, Y. Tsutsumi and G. Velo,
On the Cauchy problem for the Zakharov system, J. Funct. Anal., 151 (1997), 384-436.
doi: 10.1006/jfan.1997.3148. |
[7] |
J. Holmer,
Local ill-posedness of the 1D Zakharov system, Electron. J. Diff. Equations, 24 (2007), 22pp.
|
[8] |
I. Kato,
Well-posedness for the Cauchy problem of the Klein-Gordon-Zakharov system in four and more spatial dimensions, Comm. Pure. Appl. Anal., 15 (2016), 2247-2280.
doi: 10.3934/cpaa.2016036. |
[9] |
C. Kenig, G. Ponce and L. Vega,
A bilinear estimate with applications to the KdV equation, J. Amer. Soc., 9 (1996), 573-603.
doi: 10.1090/S0894-0347-96-00200-7. |
[10] |
H. Koch and D. Tataru,
Dispersive estimates for principally normal pseudodifferential operators, Appl. Math., 58 (2005), 217-284.
doi: 10.1002/cpa.20067. |
[11] |
H. Lindblad,
A sharp counterexample to the local existence of low-regularity solutions to nonlinear wave equations, Duke Math.J., 72 (1993), 503-539.
doi: 10.1215/S0012-7094-93-07219-5. |
[12] |
H. Lindblad,
Counterexamples to local existence for semi-linear wave equations, Amer. J. Math, 118 (1996), 1-16.
doi: 10.1353/ajm.1996.0002. |
[13] |
N. Masmoudi and K. Nakanishi,
Energy convergence for singular limits of Zakharov type systems, Invent. Math., 172 (2008), 535-583.
doi: 10.1007/s00222-008-0110-5. |
[14] |
T. Ozawa, K. Tsutaya and Y. Tsutsumi,
Well-posedness in energy space for the Cauchy problem of the Klein-Gordon-Zakharov equations with different propagation speeds in three space dimensions, Math. Ann., 313 (1999), 127-140.
doi: 10.1007/s002080050254. |
[15] |
S. Selberg,
Bilinear Fourier restriction estimates related to the 2D wave equation, Adv. Diff. Eq., 16 (2011), 667-690.
|
[16] |
T. Tao, Nonlinear Dispersive Equations: Local and Global Analysis, AMS, 2006. |
[17] |
K. Tsugawa,
Time local well-posedness of the coupled system of nonlinear wave equations with different propagation speeds, Surikaisekikenkyusho Kokyuroku, 1235 (2001), 61-90.
|
show all references
References:
[1] |
I. Bejenaru, S. Herr, J. Holmer and D. Tataru,
On the 2D Zakharov system with $L^2$ Schrödinger data, Nonlinearity, 22 (2009), 1063-1089.
doi: 10.1088/0951-7715/22/5/007. |
[2] |
I. Bejenaru and S. Herr,
Convolutions of singular measures and applications to the Zakharov system, J. Funct. Anal., 261 (2011), 478-506.
doi: 10.1016/j.jfa.2011.03.015. |
[3] |
I. Bejenaru, S. Herr and D. Tataru,
A convolution estimate for two-dimensional hypersurfaces, Rev. Mat. Iberoam, 26 (2010), 707-728.
|
[4] |
P. M. Bellan, Fundamentals of Plasmas Physics, Cambridge, Cambridge University Press, 2006.
doi: 10.1017/CBO9780511807183.![]() ![]() |
[5] |
J. Bennett, A. Carbery and J. Wright,
A non-linear generalisation of the Loomis-Whitney inequality and applications, Math. Res. Lett., 12 (2005), 443-457.
doi: 10.4310/MRL.2005.v12.n4.a1. |
[6] |
J. Ginibre, Y. Tsutsumi and G. Velo,
On the Cauchy problem for the Zakharov system, J. Funct. Anal., 151 (1997), 384-436.
doi: 10.1006/jfan.1997.3148. |
[7] |
J. Holmer,
Local ill-posedness of the 1D Zakharov system, Electron. J. Diff. Equations, 24 (2007), 22pp.
|
[8] |
I. Kato,
Well-posedness for the Cauchy problem of the Klein-Gordon-Zakharov system in four and more spatial dimensions, Comm. Pure. Appl. Anal., 15 (2016), 2247-2280.
doi: 10.3934/cpaa.2016036. |
[9] |
C. Kenig, G. Ponce and L. Vega,
A bilinear estimate with applications to the KdV equation, J. Amer. Soc., 9 (1996), 573-603.
doi: 10.1090/S0894-0347-96-00200-7. |
[10] |
H. Koch and D. Tataru,
Dispersive estimates for principally normal pseudodifferential operators, Appl. Math., 58 (2005), 217-284.
doi: 10.1002/cpa.20067. |
[11] |
H. Lindblad,
A sharp counterexample to the local existence of low-regularity solutions to nonlinear wave equations, Duke Math.J., 72 (1993), 503-539.
doi: 10.1215/S0012-7094-93-07219-5. |
[12] |
H. Lindblad,
Counterexamples to local existence for semi-linear wave equations, Amer. J. Math, 118 (1996), 1-16.
doi: 10.1353/ajm.1996.0002. |
[13] |
N. Masmoudi and K. Nakanishi,
Energy convergence for singular limits of Zakharov type systems, Invent. Math., 172 (2008), 535-583.
doi: 10.1007/s00222-008-0110-5. |
[14] |
T. Ozawa, K. Tsutaya and Y. Tsutsumi,
Well-posedness in energy space for the Cauchy problem of the Klein-Gordon-Zakharov equations with different propagation speeds in three space dimensions, Math. Ann., 313 (1999), 127-140.
doi: 10.1007/s002080050254. |
[15] |
S. Selberg,
Bilinear Fourier restriction estimates related to the 2D wave equation, Adv. Diff. Eq., 16 (2011), 667-690.
|
[16] |
T. Tao, Nonlinear Dispersive Equations: Local and Global Analysis, AMS, 2006. |
[17] |
K. Tsugawa,
Time local well-posedness of the coupled system of nonlinear wave equations with different propagation speeds, Surikaisekikenkyusho Kokyuroku, 1235 (2001), 61-90.
|
[1] |
Takamori Kato. Global well-posedness for the Kawahara equation with low regularity. Communications on Pure and Applied Analysis, 2013, 12 (3) : 1321-1339. doi: 10.3934/cpaa.2013.12.1321 |
[2] |
Hyungjin Huh, Bora Moon. Low regularity well-posedness for Gross-Neveu equations. Communications on Pure and Applied Analysis, 2015, 14 (5) : 1903-1913. doi: 10.3934/cpaa.2015.14.1903 |
[3] |
Hongjie Dong, Dapeng Du. Global well-posedness and a decay estimate for the critical dissipative quasi-geostrophic equation in the whole space. Discrete and Continuous Dynamical Systems, 2008, 21 (4) : 1095-1101. doi: 10.3934/dcds.2008.21.1095 |
[4] |
Zhaohui Huo, Boling Guo. The well-posedness of Cauchy problem for the generalized nonlinear dispersive equation. Discrete and Continuous Dynamical Systems, 2005, 12 (3) : 387-402. doi: 10.3934/dcds.2005.12.387 |
[5] |
Hongmei Cao, Hao-Guang Li, Chao-Jiang Xu, Jiang Xu. Well-posedness of Cauchy problem for Landau equation in critical Besov space. Kinetic and Related Models, 2019, 12 (4) : 829-884. doi: 10.3934/krm.2019032 |
[6] |
Neal Bez, Chris Jeavons. A sharp Sobolev-Strichartz estimate for the wave equation. Electronic Research Announcements, 2015, 22: 46-54. doi: 10.3934/era.2015.22.46 |
[7] |
Kenji Nakanishi, Hideo Takaoka, Yoshio Tsutsumi. Local well-posedness in low regularity of the MKDV equation with periodic boundary condition. Discrete and Continuous Dynamical Systems, 2010, 28 (4) : 1635-1654. doi: 10.3934/dcds.2010.28.1635 |
[8] |
Magdalena Czubak, Nina Pikula. Low regularity well-posedness for the 2D Maxwell-Klein-Gordon equation in the Coulomb gauge. Communications on Pure and Applied Analysis, 2014, 13 (4) : 1669-1683. doi: 10.3934/cpaa.2014.13.1669 |
[9] |
Takafumi Akahori. Low regularity global well-posedness for the nonlinear Schrödinger equation on closed manifolds. Communications on Pure and Applied Analysis, 2010, 9 (2) : 261-280. doi: 10.3934/cpaa.2010.9.261 |
[10] |
Wenming Hu, Huicheng Yin. Well-posedness of low regularity solutions to the second order strictly hyperbolic equations with non-Lipschitzian coefficients. Communications on Pure and Applied Analysis, 2019, 18 (4) : 1891-1919. doi: 10.3934/cpaa.2019088 |
[11] |
Hiroyuki Hirayama. Well-posedness and scattering for a system of quadratic derivative nonlinear Schrödinger equations with low regularity initial data. Communications on Pure and Applied Analysis, 2014, 13 (4) : 1563-1591. doi: 10.3934/cpaa.2014.13.1563 |
[12] |
Hartmut Pecher. Low regularity well-posedness for the 3D Klein - Gordon - Schrödinger system. Communications on Pure and Applied Analysis, 2012, 11 (3) : 1081-1096. doi: 10.3934/cpaa.2012.11.1081 |
[13] |
Kiyeon Lee. Low regularity well-posedness of Hartree type Dirac equations in 2, 3-dimensions. Communications on Pure and Applied Analysis, 2021, 20 (11) : 3683-3702. doi: 10.3934/cpaa.2021126 |
[14] |
Xiaoqiang Dai, Shaohua Chen. Global well-posedness for the Cauchy problem of generalized Boussinesq equations in the control problem regarding initial data. Discrete and Continuous Dynamical Systems - S, 2021, 14 (12) : 4201-4211. doi: 10.3934/dcdss.2021114 |
[15] |
Wenxiong Chen, Congming Li. A priori estimate for the Nirenberg problem. Discrete and Continuous Dynamical Systems - S, 2008, 1 (2) : 225-233. doi: 10.3934/dcdss.2008.1.225 |
[16] |
Yuanyuan Ren, Yongsheng Li, Wei Yan. Sharp well-posedness of the Cauchy problem for the fourth order nonlinear Schrödinger equation. Communications on Pure and Applied Analysis, 2018, 17 (2) : 487-504. doi: 10.3934/cpaa.2018027 |
[17] |
Changxing Miao, Bo Zhang. Global well-posedness of the Cauchy problem for nonlinear Schrödinger-type equations. Discrete and Continuous Dynamical Systems, 2007, 17 (1) : 181-200. doi: 10.3934/dcds.2007.17.181 |
[18] |
Nobu Kishimoto. Local well-posedness for the Cauchy problem of the quadratic Schrödinger equation with nonlinearity $\bar u^2$. Communications on Pure and Applied Analysis, 2008, 7 (5) : 1123-1143. doi: 10.3934/cpaa.2008.7.1123 |
[19] |
Isao Kato. Well-posedness for the Cauchy problem of the Klein-Gordon-Zakharov system in four and more spatial dimensions. Communications on Pure and Applied Analysis, 2016, 15 (6) : 2247-2280. doi: 10.3934/cpaa.2016036 |
[20] |
Wei Yan, Yimin Zhang, Yongsheng Li, Jinqiao Duan. Sharp well-posedness of the Cauchy problem for the rotation-modified Kadomtsev-Petviashvili equation in anisotropic Sobolev spaces. Discrete and Continuous Dynamical Systems, 2021, 41 (12) : 5825-5849. doi: 10.3934/dcds.2021097 |
2020 Impact Factor: 1.392
Tools
Metrics
Other articles
by authors
[Back to Top]