This paper is concerned with the Cauchy problem of the Klein-Gordon-Zakharov system with very low regularity initial data. We prove the bilinear estimates which are crucial to get the local in time well-posedness. The estimates are established by the Fourier restriction norm method. We utilize the nonlinear version of the classical Loomis-Whitney inequality.
Citation: |
I. Bejenaru
, S. Herr
, J. Holmer
and D. Tataru
, On the 2D Zakharov system with $L^2$ Schrödinger data, Nonlinearity, 22 (2009)
, 1063-1089.
doi: 10.1088/0951-7715/22/5/007.![]() ![]() ![]() |
|
I. Bejenaru
and S. Herr
, Convolutions of singular measures and applications to the Zakharov system, J. Funct. Anal., 261 (2011)
, 478-506.
doi: 10.1016/j.jfa.2011.03.015.![]() ![]() ![]() |
|
I. Bejenaru
, S. Herr
and D. Tataru
, A convolution estimate for two-dimensional hypersurfaces, Rev. Mat. Iberoam, 26 (2010)
, 707-728.
![]() ![]() |
|
P. M. Bellan, Fundamentals of Plasmas Physics, Cambridge, Cambridge University Press, 2006.
doi: 10.1017/CBO9780511807183.![]() ![]() |
|
J. Bennett
, A. Carbery
and J. Wright
, A non-linear generalisation of the Loomis-Whitney inequality and applications, Math. Res. Lett., 12 (2005)
, 443-457.
doi: 10.4310/MRL.2005.v12.n4.a1.![]() ![]() ![]() |
|
J. Ginibre
, Y. Tsutsumi
and G. Velo
, On the Cauchy problem for the Zakharov system, J. Funct. Anal., 151 (1997)
, 384-436.
doi: 10.1006/jfan.1997.3148.![]() ![]() ![]() |
|
J. Holmer
, Local ill-posedness of the 1D Zakharov system, Electron. J. Diff. Equations, 24 (2007)
, 22pp.
![]() ![]() |
|
I. Kato
, Well-posedness for the Cauchy problem of the Klein-Gordon-Zakharov system in four and more spatial dimensions, Comm. Pure. Appl. Anal., 15 (2016)
, 2247-2280.
doi: 10.3934/cpaa.2016036.![]() ![]() ![]() |
|
C. Kenig
, G. Ponce
and L. Vega
, A bilinear estimate with applications to the KdV equation, J. Amer. Soc., 9 (1996)
, 573-603.
doi: 10.1090/S0894-0347-96-00200-7.![]() ![]() ![]() |
|
H. Koch
and D. Tataru
, Dispersive estimates for principally normal pseudodifferential operators, Appl. Math., 58 (2005)
, 217-284.
doi: 10.1002/cpa.20067.![]() ![]() ![]() |
|
H. Lindblad
, A sharp counterexample to the local existence of low-regularity solutions to nonlinear wave equations, Duke Math.J., 72 (1993)
, 503-539.
doi: 10.1215/S0012-7094-93-07219-5.![]() ![]() ![]() |
|
H. Lindblad
, Counterexamples to local existence for semi-linear wave equations, Amer. J. Math, 118 (1996)
, 1-16.
doi: 10.1353/ajm.1996.0002.![]() ![]() ![]() |
|
N. Masmoudi
and K. Nakanishi
, Energy convergence for singular limits of Zakharov type systems, Invent. Math., 172 (2008)
, 535-583.
doi: 10.1007/s00222-008-0110-5.![]() ![]() ![]() |
|
T. Ozawa
, K. Tsutaya
and Y. Tsutsumi
, Well-posedness in energy space for the Cauchy problem of the Klein-Gordon-Zakharov equations with different propagation speeds in three space dimensions, Math. Ann., 313 (1999)
, 127-140.
doi: 10.1007/s002080050254.![]() ![]() ![]() |
|
S. Selberg
, Bilinear Fourier restriction estimates related to the 2D wave equation, Adv. Diff. Eq., 16 (2011)
, 667-690.
![]() ![]() |
|
T. Tao, Nonlinear Dispersive Equations: Local and Global Analysis, AMS, 2006.
![]() ![]() |
|
K. Tsugawa
, Time local well-posedness of the coupled system of nonlinear wave equations with different propagation speeds, Surikaisekikenkyusho Kokyuroku, 1235 (2001)
, 61-90.
![]() ![]() |