\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Traveling wave solutions of a highly nonlinear shallow water equation

  • * Corresponding author: Anna Geyer

    * Corresponding author: Anna Geyer 
Abstract Full Text(HTML) Figure(21) / Table(1) Related Papers Cited by
  • Motivated by the question whether higher-order nonlinear model equations, which go beyond the Camassa-Holm regime of moderate amplitude waves, could point us to new types of waves profiles, we study the traveling wave solutions of a quasilinear evolution equation which models the propagation of shallow water waves of large amplitude. The aim of this paper is a complete classification of its traveling wave solutions. Apart from symmetric smooth, peaked and cusped solitary and periodic traveling waves, whose existence is well-known for moderate amplitude equations like Camassa-Holm, we obtain entirely new types of singular traveling waves: periodic waves which exhibit singularities on both crests and troughs simultaneously, waves with asymmetric peaks, as well as multi-crested smooth and multi-peaked waves with decay. Our approach uses qualitative tools for dynamical systems and methods for integrable planar systems.

    Mathematics Subject Classification: Primary: 35Q35, 58F17; Secondary: 34C37.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • Figure 1.  A selection of some traveling wave solutions of (1). The waves on the left side from top to bottom are of the following types: smooth periodic, peaked periodic, cusped periodic, periodic with peaked crests and cusped troughs, periodic with peaked crests and troughs, composite, composite with plateaus. Right side top to bottom: smooth solitary, peaked solitary, cusped solitary, wavefront, compactly supported anticusp, multi-crest with decay, multi-peak with decay.

    Figure 2.  (a) the graphs of the functions $\alpha_2$ [bold], $\alpha_1$ [plain] and $\bar u$ [dashed]; (b) the graphs of $K_{\alpha_2}$ [bold], $K_{\alpha_1}$ [plain] and $K_0$ [dashed], cf. (24) and (29).

    Figure 3.  The graph of $\varphi$ for (a) $c>\bar c$ and (b) $c = \bar c$.

    Figure 4.  The graph of $\varphi$ for increasing values of $c \in (-\infty, \bar c)$.

    Figure 5.  In (5a) we sketch a phase portrait representing scenario Ⅲ in Table 1, which yields a smooth solitary and smooth periodic traveling waves as illustrated in (5b).

    Figure 6.  Sketches of phase portraits for scenario Ⅰ, i.e. $K <K_0(c)$.

    Figure 7.  Sketches of phase portraits for scenario Ⅱ, i.e. $K = K_0(c)$

    Figure 8.  Sketches of the phase portraits of scenario Ⅲ: (8a)-(8d) yield smooth periodic waves, (8a) and (8d) yield smooth solitary waves, (8b) yields peaked solitary waves, (8c) yields peaked periodic and-provided that $c\in (c_0,c_1)$-both periodic and solitary cusped traveling waves.

    Figure 9.  Sketches of peaked (9a) and cusped (9b) traveling waves.

    Figure 10.  Sketches of phase portraits in scenario Ⅳ, i.e. $K = K_{\alpha_1}(c)$.

    Figure 11.  Some examples of composite waves constructed from orbits corresponding to scenario Ⅳ: smooth (11a) and peaked (11b) traveling wave solutions with plateaus at height $\alpha_1$, smooth (11c) and peaked (11d) multi-crested solutions with decay, and smooth (11e) and non-smooth (11f) compactons.

    Figure 12.  Sketches of phase portraits in scenario Ⅴ, i.e. $K\in(K_{\alpha_1}(c),K_{\alpha_2}(c))$.

    Figure 13.  Traveling waves constructed from orbits corresponding to the phase portrait in Scenario Ⅴ, Fig. 12a: Fig. 13a shows solitary and periodic anti-cusped waves. Fig. 13b shows composite waves: a steep wave front and a periodic composition.

    Figure 14.  Traveling waves constructed from orbits corresponding to the phase portrait in Scenario Ⅴ, Fig. 12b: Fig. 14a shows solitary and periodic anti-peaked waves. Fig. 14b shows composite waves: a wave front and a periodic composition.

    Figure 15.  Sketches of phase portraits in scenario Ⅵ, i.e. $K = K_{\alpha_2}(c)$.

    Figure 16.  Sketches of phase portraits in scenario Ⅶ, i.e. $K>K_{\alpha_2}(c)$.

    Figure 17.  In Fig. 17a we see sketches of an anti-cusped and an anti-peaked solitary wave taking the constant value $\alpha_2$ outside a bounded interval-they correspond to the dark blue lines in Fig. 15a and 15b, respectively. The first image in Fig. 17b shows a periodic wave with peaked crests and cusped troughs. In the second sketch in Fig. 17b we see a periodic wave with peaked crests and troughs. These waves correspond to the dark blue lines in Fig. 16a and 16b, respectively. In Fig. 17c we see an example of a composite wave constructed from orbits of different energy levels in Fig. 16b.

    Figure 18.  Sketches of phase portraits in scenarios Ⅰ and Ⅱ.

    Figure 19.  Sketches of phase portraits in scenarios Ⅲ and Ⅳ.

    Figure 20.  Sketches of the phase portrait corresponding to scenario Ⅴ, i.e. $K>K_{\alpha}$.

    Figure 21.  Sketches of Cantor waves with peak elements (a) and cusp elements (b).

    Table 1.  A list of all possible scenarios for the ordering of fixed points on the horizontal axis. Here s stands for saddle, c for center and n means that the Jacobi matrix at the fixed point is nilpotent.

    scenario parameter order relation fixed points and type
    $K < K_0(c)$ - -
    $K = K_0(c)$ $\bar u <\alpha_1 <\alpha_2 $ $ (\bar u,0)$ n
    $K_0(c) <K <K_{\alpha_1}(c)$ $u_1 < u_2<\alpha_1 <\alpha_2$ $(u_1,0)$ $\mathrm s$, $(u_2,0)$ $\mathrm c$
    $K = K_{\alpha_1}(c)$ $u_1 < u_2=\alpha_1 <\alpha_2$ $(u_1,0)$ $\mathrm s$, $(\alpha_1,0)$ $\mathrm n$
    $K_{\alpha_1}(c) < K < K_{\alpha_2}(c)$ $u_1 <\alpha_1 < u_2 <\alpha_2$ $(u_1,0)$ $\mathrm s$, $(u_2,0)$ $\mathrm s$
    $K = K_{\alpha_2}(c)$ $u_1 <\alpha_1 < u_2 = \alpha_2$ $(u_1,0)$ $\mathrm s$, $(\alpha_2,0)$ $\mathrm n$
    $K > K_{\alpha_2}(c)$ $u_1 <\alpha_1 <\alpha_2 <u_2$ $(u_1,0)$ $\mathrm s$, $(u_2,0)$ $\mathrm c$
     | Show Table
    DownLoad: CSV
  •   T. B. Benjamin  and  J. E. Feir , The disintegration of wavetrains in deep water, J. Fluid Mech., 27 (1967) , 417-430. 
      J. L. Bona , P. E. Souganidis  and  W. Strauss , Stability and instability of solitary waves of Korteweg-de Vries type, Proc. R. Soc. Lond., Ser. A, Math. Phys. Eng. Sci., 411 (1987) , 395-412.  doi: 10.1098/rspa.1987.0073.
      G. Brüll , M. Ehrnström , A. Geyer  and  L. Pei , Symmetric solutions of evolutionary partial differential equations, Nonlinearity, 30 (2017) , 3932-3950. 
      R. Camassa  and  D. D. Holm , An integrable shallow water equation with peaked solitons, Phys. Rev. Lett., 71 (1993) , 1661-1664.  doi: 10.1103/PhysRevLett.71.1661.
      A. Constantin , The trajectories of particles in Stokes waves, Invent. Math., 166 (2006) , 523-535.  doi: 10.1007/s00222-006-0002-5.
      A. Constantin, An exact solution for equatorially trapped waves, J. Geophys. Res. : Oceans, 117 (2012), C05029. doi: 10.1029/2012JC007879.
      A. Constantin , Some nonlinear, equatorially trapped, nonhydrostatic internal geophysical waves, J. Phys. Oceanogr., 44 (2014) , 781-789.  doi: 10.1175/JPO-D-13-0174.1.
      A. Constantin, Nonlinear Water Waves with Applications to Wave-Current Interactions and Tsunamis, CBMS-NSF Regional Conference Series in Applied Mathematics, 81 SIAM Philadelphia, 2011.
      A. Constantin  and  J. Escher , Analyticity of periodic traveling free surface water waves with vorticity, Ann. Math., 173 (2011) , 559-568.  doi: 10.4007/annals.2011.173.1.12.
      A. Constantin  and  D. Lannes , The hydrodynamical relevance of the Camassa-Holm and Degasperis-Procesi equations, Arch. Ration. Mech. Anal., 192 (2009) , 165-186.  doi: 10.1007/s00205-008-0128-2.
      A. Constantin  and  W. Strauss , Stability of peakons, Commun. Pure Appl. Math., 53 (2000) , 603-610.  doi: 10.1002/(SICI)1097-0312(200005)53:5<603::AID-CPA3>3.0.CO;2-L.
      A. Constantin  and  W. Strauss , Stability of the Camassa-Holm solitons, J. Nonlinear Sci., 12 (2002) , 415-422.  doi: 10.1007/s00332-002-0517-x.
      A. Constantin  and  W. Strauss , Stability properties of steady water waves with vorticity, Comm. Pure Appl. Math., 60 (2007) , 911-950.  doi: 10.1002/cpa.20165.
      B. Deconinck  and  T. Kapitula , The orbital stability of the cnoidal waves of the Korteweg-de Vries equation, Phys. Lett. Sect. A Gen. At. Solid State Phys., 374 (2010) , 4018-4022.  doi: 10.1016/j.physleta.2010.08.007.
      A. Degasperis and M. Procesi, Asymptotic integrability, In A. Degasperis and G. Gaeta, editors, Symmetry and Perturbation Theory, pages 23–37, World Scientific, Singapore, 1999.
      F. Dumortier, J. Llibre and J. C. Artés, Qualitative Theory of Planar Differential Systems, Springer, Berlin, 2006.
      N. Duruk Mutlubas  and  A. Geyer , Orbital stability of solitary waves of moderate amplitude in shallow water, J. Differ. Equations, 255 (2013) , 254-263.  doi: 10.1016/j.jde.2013.04.010.
      M. Ehrnström , H. Holden  and  X. Raynaud , Symmetric waves are traveling waves, Int. Math. Res. Not., 2009 (2009) , 4578-4596. 
      A. Gasull  and  A. Geyer , Traveling surface waves of moderate amplitude in shallow water, Nonlinear Anal. Theory, Methods Appl., 102 (2014) , 105-119.  doi: 10.1016/j.na.2014.02.005.
      A. Geyer , Symmetric waves are traveling waves for a shallow water equation modeling surface waves of moderate amplitude, J. Nonlinear Math. Phys., 22 (2015) , 545-551.  doi: 10.1080/14029251.2015.1129492.
      A. Geyer  and  V. Mañosa , Singular solutions for a class of traveling wave equations, Nonlinear Anal. Real World Appl., 31 (2016) , 57-76.  doi: 10.1016/j.nonrwa.2016.01.009.
      J. Guggenheimer and P. Holmes, Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields, Springer, 1983. doi: 10.1007/978-1-4612-1140-2.
      D. Henry, Equatorially trapped nonlinear water waves in a $β$-plane approximation with centripetal forces, J. Fluid Mech. , 804 (2016), R1, 11 pp.
      E. Hewitt and K. Stromberg, Real and Abstract Analysis, Springer-Verlag, New York-Heidelberg, 1975.
      V. M. Hur , Analyticity of rotational flows beneath solitary water waves, Int. Math. Res. Not. IMRN, 2012 (2012) , 2550-2570. 
      R. S. Johnson , Camassa-Holm, Korteweg-de Vries and related models for water waves, J. Fluid Mech., 455 (2002) , 63-82. 
      D. J. Korteweg  and  G. de Vries , On the change of form of long waves advancing in a rectangular canal and on a new type of long stationary waves, Phil. Mag., 39 (1895) , 422-443.  doi: 10.1080/14786449508620739.
      J. Lenells , A variational approach to the stability of periodic peakons, J. Nonlinear Math. Phys., 11 (2004) , 151-163.  doi: 10.2991/jnmp.2004.11.2.2.
      J. Lenells , Stability of periodic peakons, Int. Math. Res. Not., 10 (2004) , 485-499. 
      J. Lenells , Stability for the periodic Camassa-Holm equation, Math. Scand., 97 (2005) , 188-200.  doi: 10.7146/math.scand.a-14971.
      J. Lenells , Traveling wave solutions of the Camassa-Holm equation, J. Differ. Equ., 217 (2005) , 393-430.  doi: 10.1016/j.jde.2004.09.007.
      J. Lenells , Traveling wave solutions of the Degasperis-Procesi equation, J. Math. Anal. Appl., 306 (2005) , 72-82.  doi: 10.1016/j.jmaa.2004.11.038.
      Z. Lin  and  Y. Liu , Stability of peakons for the Degasperis-Procesi equation, Comm. Pure Appl. Math., 62 (2009) , 125-146. 
      T. Lyons , The pressure in a deep-water Stokes wave of greatest height, J. Math. Fluid Mech., 18 (2016) , 209-218.  doi: 10.1007/s00021-016-0249-6.
      R. Quirchmayr , A new highly nonlinear shallow water wave equation, J. Evol. Equations, 16 (2016) , 539-567.  doi: 10.1007/s00028-015-0312-4.
      H. Segur , D. Henderson , J. Carter , J. Hammack , C.-M. Li , D. Pheiff  and  K. Socha , Stabilizing the Benjamin-Feir instability, J. Fluid Mech., 539 (2005) , 229-271.  doi: 10.1017/S002211200500563X.
      G. Teschl, Ordinary Differential Equations and Dynamical Systems, Graduate Studies in Mathematics 140 AMS, Providence, RI, 2012.
      J. F. Toland , Stokes waves, Topol. Methods Nonlinear Anal., 7 (1996) , 1-48.  doi: 10.12775/TMNA.1996.001.
      E. Varvaruca  and  G. S. Weiss , The Stokes conjecture for waves with vorticity, Ann. Inst. H. Poincaré Anal. Non Linéaire, 29 (2012) , 861-885.  doi: 10.1016/j.anihpc.2012.05.001.
  • 加载中
Open Access Under a Creative Commons license

Figures(21)

Tables(1)

SHARE

Article Metrics

HTML views(3839) PDF downloads(632) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return