|
T. B. Benjamin
and J. E. Feir
, The disintegration of wavetrains in deep water, J. Fluid Mech., 27 (1967)
, 417-430.
|
|
J. L. Bona
, P. E. Souganidis
and W. Strauss
, Stability and instability of solitary waves of Korteweg-de Vries type, Proc. R. Soc. Lond., Ser. A, Math. Phys. Eng. Sci., 411 (1987)
, 395-412.
doi: 10.1098/rspa.1987.0073.
|
|
G. Brüll
, M. Ehrnström
, A. Geyer
and L. Pei
, Symmetric solutions of evolutionary partial differential equations, Nonlinearity, 30 (2017)
, 3932-3950.
|
|
R. Camassa
and D. D. Holm
, An integrable shallow water equation with peaked solitons, Phys. Rev. Lett., 71 (1993)
, 1661-1664.
doi: 10.1103/PhysRevLett.71.1661.
|
|
A. Constantin
, The trajectories of particles in Stokes waves, Invent. Math., 166 (2006)
, 523-535.
doi: 10.1007/s00222-006-0002-5.
|
|
A. Constantin, An exact solution for equatorially trapped waves, J. Geophys. Res. : Oceans, 117 (2012), C05029.
doi: 10.1029/2012JC007879.
|
|
A. Constantin
, Some nonlinear, equatorially trapped, nonhydrostatic internal geophysical waves, J. Phys. Oceanogr., 44 (2014)
, 781-789.
doi: 10.1175/JPO-D-13-0174.1.
|
|
A. Constantin, Nonlinear Water Waves with Applications to Wave-Current Interactions and Tsunamis, CBMS-NSF Regional Conference Series in Applied Mathematics, 81 SIAM Philadelphia, 2011.
|
|
A. Constantin
and J. Escher
, Analyticity of periodic traveling free surface water waves with vorticity, Ann. Math., 173 (2011)
, 559-568.
doi: 10.4007/annals.2011.173.1.12.
|
|
A. Constantin
and D. Lannes
, The hydrodynamical relevance of the Camassa-Holm and Degasperis-Procesi equations, Arch. Ration. Mech. Anal., 192 (2009)
, 165-186.
doi: 10.1007/s00205-008-0128-2.
|
|
A. Constantin
and W. Strauss
, Stability of peakons, Commun. Pure Appl. Math., 53 (2000)
, 603-610.
doi: 10.1002/(SICI)1097-0312(200005)53:5<603::AID-CPA3>3.0.CO;2-L.
|
|
A. Constantin
and W. Strauss
, Stability of the Camassa-Holm solitons, J. Nonlinear Sci., 12 (2002)
, 415-422.
doi: 10.1007/s00332-002-0517-x.
|
|
A. Constantin
and W. Strauss
, Stability properties of steady water waves with vorticity, Comm. Pure Appl. Math., 60 (2007)
, 911-950.
doi: 10.1002/cpa.20165.
|
|
B. Deconinck
and T. Kapitula
, The orbital stability of the cnoidal waves of the Korteweg-de Vries equation, Phys. Lett. Sect. A Gen. At. Solid State Phys., 374 (2010)
, 4018-4022.
doi: 10.1016/j.physleta.2010.08.007.
|
|
A. Degasperis and M. Procesi, Asymptotic integrability, In A. Degasperis and G. Gaeta, editors, Symmetry and Perturbation Theory, pages 23–37, World Scientific, Singapore, 1999.
|
|
F. Dumortier, J. Llibre and J. C. Artés, Qualitative Theory of Planar Differential Systems, Springer, Berlin, 2006.
|
|
N. Duruk Mutlubas
and A. Geyer
, Orbital stability of solitary waves of moderate amplitude in shallow water, J. Differ. Equations, 255 (2013)
, 254-263.
doi: 10.1016/j.jde.2013.04.010.
|
|
M. Ehrnström
, H. Holden
and X. Raynaud
, Symmetric waves are traveling waves, Int. Math. Res. Not., 2009 (2009)
, 4578-4596.
|
|
A. Gasull
and A. Geyer
, Traveling surface waves of moderate amplitude in shallow water, Nonlinear Anal. Theory, Methods Appl., 102 (2014)
, 105-119.
doi: 10.1016/j.na.2014.02.005.
|
|
A. Geyer
, Symmetric waves are traveling waves for a shallow water equation modeling surface waves of moderate amplitude, J. Nonlinear Math. Phys., 22 (2015)
, 545-551.
doi: 10.1080/14029251.2015.1129492.
|
|
A. Geyer
and V. Mañosa
, Singular solutions for a class of traveling wave equations, Nonlinear Anal. Real World Appl., 31 (2016)
, 57-76.
doi: 10.1016/j.nonrwa.2016.01.009.
|
|
J. Guggenheimer and P. Holmes, Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields, Springer, 1983.
doi: 10.1007/978-1-4612-1140-2.
|
|
D. Henry, Equatorially trapped nonlinear water waves in a $β$-plane approximation with centripetal forces, J. Fluid Mech. , 804 (2016), R1, 11 pp.
|
|
E. Hewitt and K. Stromberg, Real and Abstract Analysis, Springer-Verlag, New York-Heidelberg, 1975.
|
|
V. M. Hur
, Analyticity of rotational flows beneath solitary water waves, Int. Math. Res. Not. IMRN, 2012 (2012)
, 2550-2570.
|
|
R. S. Johnson
, Camassa-Holm, Korteweg-de Vries and related models for water waves, J. Fluid Mech., 455 (2002)
, 63-82.
|
|
D. J. Korteweg
and G. de Vries
, On the change of form of long waves advancing in a rectangular canal and on a new type of long stationary waves, Phil. Mag., 39 (1895)
, 422-443.
doi: 10.1080/14786449508620739.
|
|
J. Lenells
, A variational approach to the stability of periodic peakons, J. Nonlinear Math. Phys., 11 (2004)
, 151-163.
doi: 10.2991/jnmp.2004.11.2.2.
|
|
J. Lenells
, Stability of periodic peakons, Int. Math. Res. Not., 10 (2004)
, 485-499.
|
|
J. Lenells
, Stability for the periodic Camassa-Holm equation, Math. Scand., 97 (2005)
, 188-200.
doi: 10.7146/math.scand.a-14971.
|
|
J. Lenells
, Traveling wave solutions of the Camassa-Holm equation, J. Differ. Equ., 217 (2005)
, 393-430.
doi: 10.1016/j.jde.2004.09.007.
|
|
J. Lenells
, Traveling wave solutions of the Degasperis-Procesi equation, J. Math. Anal. Appl., 306 (2005)
, 72-82.
doi: 10.1016/j.jmaa.2004.11.038.
|
|
Z. Lin
and Y. Liu
, Stability of peakons for the Degasperis-Procesi equation, Comm. Pure Appl. Math., 62 (2009)
, 125-146.
|
|
T. Lyons
, The pressure in a deep-water Stokes wave of greatest height, J. Math. Fluid Mech., 18 (2016)
, 209-218.
doi: 10.1007/s00021-016-0249-6.
|
|
R. Quirchmayr
, A new highly nonlinear shallow water wave equation, J. Evol. Equations, 16 (2016)
, 539-567.
doi: 10.1007/s00028-015-0312-4.
|
|
H. Segur
, D. Henderson
, J. Carter
, J. Hammack
, C.-M. Li
, D. Pheiff
and K. Socha
, Stabilizing the Benjamin-Feir instability, J. Fluid Mech., 539 (2005)
, 229-271.
doi: 10.1017/S002211200500563X.
|
|
G. Teschl, Ordinary Differential Equations and Dynamical Systems, Graduate Studies in Mathematics 140 AMS, Providence, RI, 2012.
|
|
J. F. Toland
, Stokes waves, Topol. Methods Nonlinear Anal., 7 (1996)
, 1-48.
doi: 10.12775/TMNA.1996.001.
|
|
E. Varvaruca
and G. S. Weiss
, The Stokes conjecture for waves with vorticity, Ann. Inst. H. Poincaré Anal. Non Linéaire, 29 (2012)
, 861-885.
doi: 10.1016/j.anihpc.2012.05.001.
|