- Previous Article
- DCDS Home
- This Issue
-
Next Article
Traveling wave solutions of a highly nonlinear shallow water equation
Wave breaking of periodic solutions to the Fornberg-Whitham equation
Fakultät für Mathematik, Universität Wien, Austria |
Based on recent well-posedness results in Sobolev (or Besov spaces) for periodic solutions to the Fornberg-Whitham equations we investigate here the questions of wave breaking and blow-up for these solutions. We show first that finite maximal life time of a solution necessarily leads to wave breaking. Second, we prove that for a certain class of initial wave profiles the corresponding solutions do indeed blow-up in finite time.
References:
[1] |
H. Brezis, Functional Analysis, Sobolev Spaces and Partial Differential Equations, Springer-Verlag, New York, 2011. |
[2] |
A. Constantin, Nonlinear Water Waves with Applications to Wave-Current Interactions and Tsunamis, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, 2011. |
[3] |
A. Constantin and J. Escher,
Wave breaking for nonlinear nonlocal shallow water equations, Acta Math., 181 (1998), 229-243.
doi: 10.1007/BF02392586. |
[4] |
A. Constantin, J. Escher, R. S. Johnson and G. Villari, Nonlinear Water Waves, Springer-Verlag, Florence, 2016. |
[5] |
B. Fornberg and G. B. Whitham,
A numerical and theoretical study of certain nonlinear wave phenomena, Philos. Trans. Roy. Soc. London Ser. A, 289 (1978), 373-404.
doi: 10.1098/rsta.1978.0064. |
[6] |
L. Grafakos, Classical and Modern Fourier Analysis, Pearson Education, Upper Saddle River, 2004. |
[7] |
J. Holmes,
Well-posedness of the Fornberg-Whitham equation on the circle, J. Differential Equations, 260 (2016), 8530-8549.
doi: 10.1016/j.jde.2016.02.030. |
[8] |
J. Holmes and R. C. Thompson,
Well-posedness and continuity properties of the Fornberg-Whitham equation in Besov spaces, J. Differential Equations, 263 (2017), 4355-4381.
doi: 10.1016/j.jde.2017.05.019. |
[9] |
P. I. Naumkin and I. A. Shishmarëv, Nonlinear Nonlocal Equations in the Theory of Waves, American Mathematical Society, Providence, 1994. |
[10] |
R. L. Seliger,
A note on the breaking of waves, Proc. Roy. Soc. A, 303 (1968), 493-496.
doi: 10.1098/rspa.1968.0063. |
[11] |
G. B. Whitham, Linear and Nonlinear Waves, Wiley-Interscience, New York-London-Sydney, 1974. |
show all references
References:
[1] |
H. Brezis, Functional Analysis, Sobolev Spaces and Partial Differential Equations, Springer-Verlag, New York, 2011. |
[2] |
A. Constantin, Nonlinear Water Waves with Applications to Wave-Current Interactions and Tsunamis, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, 2011. |
[3] |
A. Constantin and J. Escher,
Wave breaking for nonlinear nonlocal shallow water equations, Acta Math., 181 (1998), 229-243.
doi: 10.1007/BF02392586. |
[4] |
A. Constantin, J. Escher, R. S. Johnson and G. Villari, Nonlinear Water Waves, Springer-Verlag, Florence, 2016. |
[5] |
B. Fornberg and G. B. Whitham,
A numerical and theoretical study of certain nonlinear wave phenomena, Philos. Trans. Roy. Soc. London Ser. A, 289 (1978), 373-404.
doi: 10.1098/rsta.1978.0064. |
[6] |
L. Grafakos, Classical and Modern Fourier Analysis, Pearson Education, Upper Saddle River, 2004. |
[7] |
J. Holmes,
Well-posedness of the Fornberg-Whitham equation on the circle, J. Differential Equations, 260 (2016), 8530-8549.
doi: 10.1016/j.jde.2016.02.030. |
[8] |
J. Holmes and R. C. Thompson,
Well-posedness and continuity properties of the Fornberg-Whitham equation in Besov spaces, J. Differential Equations, 263 (2017), 4355-4381.
doi: 10.1016/j.jde.2017.05.019. |
[9] |
P. I. Naumkin and I. A. Shishmarëv, Nonlinear Nonlocal Equations in the Theory of Waves, American Mathematical Society, Providence, 1994. |
[10] |
R. L. Seliger,
A note on the breaking of waves, Proc. Roy. Soc. A, 303 (1968), 493-496.
doi: 10.1098/rspa.1968.0063. |
[11] |
G. B. Whitham, Linear and Nonlinear Waves, Wiley-Interscience, New York-London-Sydney, 1974. |
[1] |
Günther Hörmann, Hisashi Okamoto. Weak periodic solutions and numerical case studies of the Fornberg-Whitham equation. Discrete and Continuous Dynamical Systems, 2019, 39 (8) : 4455-4469. doi: 10.3934/dcds.2019182 |
[2] |
Min Li, Zhaoyang Yin. Blow-up phenomena and travelling wave solutions to the periodic integrable dispersive Hunter-Saxton equation. Discrete and Continuous Dynamical Systems, 2017, 37 (12) : 6471-6485. doi: 10.3934/dcds.2017280 |
[3] |
Takiko Sasaki. Convergence of a blow-up curve for a semilinear wave equation. Discrete and Continuous Dynamical Systems - S, 2021, 14 (3) : 1133-1143. doi: 10.3934/dcdss.2020388 |
[4] |
Donghao Li, Hongwei Zhang, Shuo Liu, Qingiyng Hu. Blow-up of solutions to a viscoelastic wave equation with nonlocal damping. Evolution Equations and Control Theory, 2022 doi: 10.3934/eect.2022009 |
[5] |
Frédéric Abergel, Jean-Michel Rakotoson. Gradient blow-up in Zygmund spaces for the very weak solution of a linear elliptic equation. Discrete and Continuous Dynamical Systems, 2013, 33 (5) : 1809-1818. doi: 10.3934/dcds.2013.33.1809 |
[6] |
Li Ma. Blow-up for semilinear parabolic equations with critical Sobolev exponent. Communications on Pure and Applied Analysis, 2013, 12 (2) : 1103-1110. doi: 10.3934/cpaa.2013.12.1103 |
[7] |
Yuta Wakasugi. Blow-up of solutions to the one-dimensional semilinear wave equation with damping depending on time and space variables. Discrete and Continuous Dynamical Systems, 2014, 34 (9) : 3831-3846. doi: 10.3934/dcds.2014.34.3831 |
[8] |
Asma Azaiez. Refined regularity for the blow-up set at non characteristic points for the vector-valued semilinear wave equation. Communications on Pure and Applied Analysis, 2019, 18 (5) : 2397-2408. doi: 10.3934/cpaa.2019108 |
[9] |
Xiaoqiang Dai, Chao Yang, Shaobin Huang, Tao Yu, Yuanran Zhu. Finite time blow-up for a wave equation with dynamic boundary condition at critical and high energy levels in control systems. Electronic Research Archive, 2020, 28 (1) : 91-102. doi: 10.3934/era.2020006 |
[10] |
Masahiro Ikeda, Ziheng Tu, Kyouhei Wakasa. Small data blow-up of semi-linear wave equation with scattering dissipation and time-dependent mass. Evolution Equations and Control Theory, 2022, 11 (2) : 515-536. doi: 10.3934/eect.2021011 |
[11] |
Mohammad Kafini. On the blow-up of the Cauchy problem of higher-order nonlinear viscoelastic wave equation. Discrete and Continuous Dynamical Systems - S, 2022, 15 (5) : 1221-1232. doi: 10.3934/dcdss.2021093 |
[12] |
Nadjat Doudi, Salah Boulaaras, Nadia Mezouar, Rashid Jan. Global existence, general decay and blow-up for a nonlinear wave equation with logarithmic source term and fractional boundary dissipation. Discrete and Continuous Dynamical Systems - S, 2022 doi: 10.3934/dcdss.2022106 |
[13] |
Alberto Bressan, Massimo Fonte. On the blow-up for a discrete Boltzmann equation in the plane. Discrete and Continuous Dynamical Systems, 2005, 13 (1) : 1-12. doi: 10.3934/dcds.2005.13.1 |
[14] |
Zhaoyang Yin. Well-posedness and blow-up phenomena for the periodic generalized Camassa-Holm equation. Communications on Pure and Applied Analysis, 2004, 3 (3) : 501-508. doi: 10.3934/cpaa.2004.3.501 |
[15] |
Min Zhu, Shuanghu Zhang. Blow-up of solutions to the periodic modified Camassa-Holm equation with varying linear dispersion. Discrete and Continuous Dynamical Systems, 2016, 36 (12) : 7235-7256. doi: 10.3934/dcds.2016115 |
[16] |
Min Zhu, Ying Wang. Blow-up of solutions to the periodic generalized modified Camassa-Holm equation with varying linear dispersion. Discrete and Continuous Dynamical Systems, 2017, 37 (1) : 645-661. doi: 10.3934/dcds.2017027 |
[17] |
Min Zhu, Shuanghu Zhang. On the blow-up of solutions to the periodic modified integrable Camassa--Holm equation. Discrete and Continuous Dynamical Systems, 2016, 36 (4) : 2347-2364. doi: 10.3934/dcds.2016.36.2347 |
[18] |
Mohamed-Ali Hamza, Hatem Zaag. Blow-up results for semilinear wave equations in the superconformal case. Discrete and Continuous Dynamical Systems - B, 2013, 18 (9) : 2315-2329. doi: 10.3934/dcdsb.2013.18.2315 |
[19] |
Satyanad Kichenassamy. Control of blow-up singularities for nonlinear wave equations. Evolution Equations and Control Theory, 2013, 2 (4) : 669-677. doi: 10.3934/eect.2013.2.669 |
[20] |
Tayeb Hadj Kaddour, Michael Reissig. Blow-up results for effectively damped wave models with nonlinear memory. Communications on Pure and Applied Analysis, 2021, 20 (7&8) : 2687-2707. doi: 10.3934/cpaa.2020239 |
2020 Impact Factor: 1.392
Tools
Metrics
Other articles
by authors
[Back to Top]