
-
Previous Article
Periodic measures are dense in invariant measures for residually finite amenable group actions with specification
- DCDS Home
- This Issue
- Next Article
Weakly mixing diffeomorphisms preserving a measurable Riemannian metric with prescribed Liouville rotation behavior
1. | University of Education Vorarlberg, Liechtensteinerstrasse 33 - 37, 6800 Feldkirch, Austria |
2. | University of Hamburg, Department of Mathematics, Bundesstrasse 55, 20146 Hamburg, Germany |
We show that on any smooth compact connected manifold of dimension $m≥2$ admitting a smooth non-trivial circle action $\mathcal{S} = \left\{S_t\right\}_{t ∈ \mathbb{R}}$, $S_{t+1}=S_t$, the set of weakly mixing $C^{∞}$-diffeomorphisms which preserve both a smooth volume $ν$ and a measurable Riemannian metric is dense in ${{\mathcal{A}}_{\alpha }}\left( M \right)={{\overline{\left\{ h\circ {{S}_{\alpha }}\circ {{h}^{-1}}:h\in \text{Dif}{{\text{f}}^{\infty }}\left( M,\nu \right) \right\}}}^{{{C}^{\infty }}}}$ for every Liouville number $α$. The proof is based on a quantitative version of the approximation by conjugation-method with explicitly constructed conjugation maps and partitions.
References:
[1] |
D. V. Anosov and A. Katok,
New examples in smooth ergodic theory. Ergodic diffeomorphisms, Trudy Moskov. Mat. Obsc., 23 (1970), 3-36.
|
[2] |
M. Benhenda,
Non-standard smooth realization of translations on the torus, J. Mod. Dyn., 7 (2013), 329-367.
doi: 10.3934/jmd.2013.7.329. |
[3] |
R. Berndt, Einführung in Die Symplektische Geometrie, Vieweg, Braunschweig [u.a.], 1998. |
[4] |
G. M. Constantine and T. H. Savits,
A multivariate Faa di Bruno formula with applications, Trans. Amer. Math. Soc., 348 (1996), 503-520.
doi: 10.1090/S0002-9947-96-01501-2. |
[5] |
B. Fayad and A. Katok,
Constructions in elliptic dynamics, Ergodic Theory Dynam. Systems, 24 (2004), 1477-1520.
doi: 10.1017/S0143385703000798. |
[6] |
B. Fayad and R. Krikorian,
Herman's last geometric theorem, Ann. Scient. Ecole. Norm.
Sup., 42 (2009), 193-219.
doi: 10.24033/asens.2093. |
[7] |
B. Fayad and M. Saprykina,
Weak mixing disc and annulus diffeomorphisms with arbitrary Liouville rotation number on the boundary, Ann. Scient. Ecole. Norm. Sup.(4), 38 (2005), 339-364.
doi: 10.1016/j.ansens.2005.03.004. |
[8] |
B. Fayad, M. Saprykina and A. Windsor,
Nonstandard smooth realizations of Liouville rotations, Ergodic Theory Dynam. Systems, 27 (2007), 1803-1818.
|
[9] |
R. Gunesch and A. Katok,
Construction of weakly mixing diffeomorphisms preserving measurable Riemannian metric and smooth measure, Discrete Contin. Dynam. Systems, 6 (2000), 61-88.
|
[10] |
P. R. Halmos, Lectures on Ergodic Theory, Japan Math Soc., Tokyo, 1956. |
[11] |
P. R. Halmos, Measure Theory, D. Van Nostrand Company, Inc., New York, N. Y., 1950. |
[12] |
B. Hasselblatt and A. Katok, Introduction to the Modern Theory of Dynamical Systems,
Cambridge University Press, Cambridge [u.a.], 1995. |
[13] |
B. Hasselblatt and A. Katok,
Principal Structures
In: B. Hasselblatt und A. Katok (Editors) Handbook of Dynamical Systems, Band 1A. Elsevier, Amsterdam [u.a.], 2002. |
[14] |
A. Kriegl and P. Michor,
The Convenient Setting of Global Analysis,
American Math. Soc., Providence, 1997. |
[15] |
P. Kunde,
Real-analytic weak mixing diffeomorphism preserving a measurable Riemannian metric, Ergodic Theory & Dynam. Systems 37, no. 37 (2017), 1547-1569.
doi: 10.1017/etds.2015.125. |
[16] |
J. Moser,
On the volume elements on a manifold, Trans. Amer. Math. Soc., 120 (1965), 286-294.
doi: 10.1090/S0002-9947-1965-0182927-5. |
[17] |
H. Omori,
Infinite Dimensional Lie Transformation Groups,
Springer, Berlin [u.a.], 1974. |
[18] |
B. O'Neill,
Semi-Riemannian Geometry,
Academic Press, New York, 1983. |
[19] |
M. D. Sklover,
Classical dynamical systems on the torus with continuous spectrum, Izv. Vys. Ucebn. Zaved. Mat., 1967 (1967), 113-124.
|
show all references
References:
[1] |
D. V. Anosov and A. Katok,
New examples in smooth ergodic theory. Ergodic diffeomorphisms, Trudy Moskov. Mat. Obsc., 23 (1970), 3-36.
|
[2] |
M. Benhenda,
Non-standard smooth realization of translations on the torus, J. Mod. Dyn., 7 (2013), 329-367.
doi: 10.3934/jmd.2013.7.329. |
[3] |
R. Berndt, Einführung in Die Symplektische Geometrie, Vieweg, Braunschweig [u.a.], 1998. |
[4] |
G. M. Constantine and T. H. Savits,
A multivariate Faa di Bruno formula with applications, Trans. Amer. Math. Soc., 348 (1996), 503-520.
doi: 10.1090/S0002-9947-96-01501-2. |
[5] |
B. Fayad and A. Katok,
Constructions in elliptic dynamics, Ergodic Theory Dynam. Systems, 24 (2004), 1477-1520.
doi: 10.1017/S0143385703000798. |
[6] |
B. Fayad and R. Krikorian,
Herman's last geometric theorem, Ann. Scient. Ecole. Norm.
Sup., 42 (2009), 193-219.
doi: 10.24033/asens.2093. |
[7] |
B. Fayad and M. Saprykina,
Weak mixing disc and annulus diffeomorphisms with arbitrary Liouville rotation number on the boundary, Ann. Scient. Ecole. Norm. Sup.(4), 38 (2005), 339-364.
doi: 10.1016/j.ansens.2005.03.004. |
[8] |
B. Fayad, M. Saprykina and A. Windsor,
Nonstandard smooth realizations of Liouville rotations, Ergodic Theory Dynam. Systems, 27 (2007), 1803-1818.
|
[9] |
R. Gunesch and A. Katok,
Construction of weakly mixing diffeomorphisms preserving measurable Riemannian metric and smooth measure, Discrete Contin. Dynam. Systems, 6 (2000), 61-88.
|
[10] |
P. R. Halmos, Lectures on Ergodic Theory, Japan Math Soc., Tokyo, 1956. |
[11] |
P. R. Halmos, Measure Theory, D. Van Nostrand Company, Inc., New York, N. Y., 1950. |
[12] |
B. Hasselblatt and A. Katok, Introduction to the Modern Theory of Dynamical Systems,
Cambridge University Press, Cambridge [u.a.], 1995. |
[13] |
B. Hasselblatt and A. Katok,
Principal Structures
In: B. Hasselblatt und A. Katok (Editors) Handbook of Dynamical Systems, Band 1A. Elsevier, Amsterdam [u.a.], 2002. |
[14] |
A. Kriegl and P. Michor,
The Convenient Setting of Global Analysis,
American Math. Soc., Providence, 1997. |
[15] |
P. Kunde,
Real-analytic weak mixing diffeomorphism preserving a measurable Riemannian metric, Ergodic Theory & Dynam. Systems 37, no. 37 (2017), 1547-1569.
doi: 10.1017/etds.2015.125. |
[16] |
J. Moser,
On the volume elements on a manifold, Trans. Amer. Math. Soc., 120 (1965), 286-294.
doi: 10.1090/S0002-9947-1965-0182927-5. |
[17] |
H. Omori,
Infinite Dimensional Lie Transformation Groups,
Springer, Berlin [u.a.], 1974. |
[18] |
B. O'Neill,
Semi-Riemannian Geometry,
Academic Press, New York, 1983. |
[19] |
M. D. Sklover,
Classical dynamical systems on the torus with continuous spectrum, Izv. Vys. Ucebn. Zaved. Mat., 1967 (1967), 113-124.
|




[1] |
Roland Gunesch, Anatole Katok. Construction of weakly mixing diffeomorphisms preserving measurable Riemannian metric and smooth measure. Discrete and Continuous Dynamical Systems, 2000, 6 (1) : 61-88. doi: 10.3934/dcds.2000.6.61 |
[2] |
Asaf Katz. On mixing and sparse ergodic theorems. Journal of Modern Dynamics, 2021, 17: 1-32. doi: 10.3934/jmd.2021001 |
[3] |
Stefan Haller, Tomasz Rybicki, Josef Teichmann. Smooth perfectness for the group of diffeomorphisms. Journal of Geometric Mechanics, 2013, 5 (3) : 281-294. doi: 10.3934/jgm.2013.5.281 |
[4] |
Dominic Veconi. Equilibrium states of almost Anosov diffeomorphisms. Discrete and Continuous Dynamical Systems, 2020, 40 (2) : 767-780. doi: 10.3934/dcds.2020061 |
[5] |
Ryszard Rudnicki. An ergodic theory approach to chaos. Discrete and Continuous Dynamical Systems, 2015, 35 (2) : 757-770. doi: 10.3934/dcds.2015.35.757 |
[6] |
Thierry de la Rue. An introduction to joinings in ergodic theory. Discrete and Continuous Dynamical Systems, 2006, 15 (1) : 121-142. doi: 10.3934/dcds.2006.15.121 |
[7] |
Hadda Hmili. Non topologically weakly mixing interval exchanges. Discrete and Continuous Dynamical Systems, 2010, 27 (3) : 1079-1091. doi: 10.3934/dcds.2010.27.1079 |
[8] |
François Blanchard, Wen Huang. Entropy sets, weakly mixing sets and entropy capacity. Discrete and Continuous Dynamical Systems, 2008, 20 (2) : 275-311. doi: 10.3934/dcds.2008.20.275 |
[9] |
Ralf Spatzier, Lei Yang. Exponential mixing and smooth classification of commuting expanding maps. Journal of Modern Dynamics, 2017, 11: 263-312. doi: 10.3934/jmd.2017012 |
[10] |
Dmitri Scheglov. Absence of mixing for smooth flows on genus two surfaces. Journal of Modern Dynamics, 2009, 3 (1) : 13-34. doi: 10.3934/jmd.2009.3.13 |
[11] |
Eleonora Catsigeras, Heber Enrich. SRB measures of certain almost hyperbolic diffeomorphisms with a tangency. Discrete and Continuous Dynamical Systems, 2001, 7 (1) : 177-202. doi: 10.3934/dcds.2001.7.177 |
[12] |
Sorin Micu, Ademir F. Pazoto. Almost periodic solutions for a weakly dissipated hybrid system. Mathematical Control and Related Fields, 2014, 4 (1) : 101-113. doi: 10.3934/mcrf.2014.4.101 |
[13] |
Philipp Kunde. Smooth diffeomorphisms with homogeneous spectrum and disjointness of convolutions. Journal of Modern Dynamics, 2016, 10: 439-481. doi: 10.3934/jmd.2016.10.439 |
[14] |
A. M. Micheletti, Angela Pistoia. Multiple eigenvalues of the Laplace-Beltrami operator and deformation of the Riemannian metric. Discrete and Continuous Dynamical Systems, 1998, 4 (4) : 709-720. doi: 10.3934/dcds.1998.4.709 |
[15] |
Vladimir S. Matveev and Petar J. Topalov. Metric with ergodic geodesic flow is completely determined by unparameterized geodesics. Electronic Research Announcements, 2000, 6: 98-104. |
[16] |
Xiongping Dai, Yu Huang, Mingqing Xiao. Realization of joint spectral radius via Ergodic theory. Electronic Research Announcements, 2011, 18: 22-30. doi: 10.3934/era.2011.18.22 |
[17] |
Cristina Lizana, Vilton Pinheiro, Paulo Varandas. Contribution to the ergodic theory of robustly transitive maps. Discrete and Continuous Dynamical Systems, 2015, 35 (1) : 353-365. doi: 10.3934/dcds.2015.35.353 |
[18] |
Adam Kanigowski, Davide Ravotti. Polynomial 3-mixing for smooth time-changes of horocycle flows. Discrete and Continuous Dynamical Systems, 2020, 40 (9) : 5347-5371. doi: 10.3934/dcds.2020230 |
[19] |
Michael Hochman. Lectures on dynamics, fractal geometry, and metric number theory. Journal of Modern Dynamics, 2014, 8 (3&4) : 437-497. doi: 10.3934/jmd.2014.8.437 |
[20] |
Ugo Boscain, Gregoire Charlot, Moussa Gaye, Paolo Mason. Local properties of almost-Riemannian structures in dimension 3. Discrete and Continuous Dynamical Systems, 2015, 35 (9) : 4115-4147. doi: 10.3934/dcds.2015.35.4115 |
2020 Impact Factor: 1.392
Tools
Metrics
Other articles
by authors
[Back to Top]