We prove that for actions of a discrete countable residuallyfinite amenable group on a compact metric space with specification property, periodic measures are dense in theset of invariant measures. We also prove that certain expansiveactions of a countable discrete group by automorphisms of compact abelian groups have specification property.
Citation: |
M. Abért
, A. Jaikin-Zapirain
and N. Nikolay
, The rank gradient from a combinatorial viewpoint, Groups Geom. Dyn., 5 (2011)
, 213-230.
doi: 10.4171/GGD/124.![]() ![]() ![]() |
|
F. Abdenur
, C. Bonatti
and S. Crovisier
, Nonuniform hyperbolicity for C$^{1}$-generic diffeomorphisms, Israel J. Math., 183 (2011)
, 1-60.
doi: 10.1007/s11856-011-0041-5.![]() ![]() ![]() |
|
R. Bowen
, Periodic points and measures for Axiom A diffeomorphisms, Trans. Amer. Math. Soc., 154 (1971)
, 377-397.
![]() ![]() |
|
B. F. Bryant
, On expansive homeomorphisms, Pacific J. Math., 10 (1960)
, 1163-1167.
doi: 10.2140/pjm.1960.10.1163.![]() ![]() ![]() |
|
T. Ceccherini-Silberstein and M. Coornaert,
Cellular Automata and Groups,
Springer Monographs in Mathematics, Springer-Verlag, New York, Berlin, 2010.
doi: 978-3-642-14033-4.![]() ![]() ![]() |
|
N. P. Chung
and H. Li
, Homoclinic group, IE group, and expansive algebraic actions, Invent. Math., 199 (2015)
, 805-858.
doi: 10.1007/s00222-014-0524-1.![]() ![]() ![]() |
|
M. Coornaert,
Topological Dimension and Dynamical Systems,
Universitext, Springer, Cham, 2015.
doi: 978-3-319-19793-7.![]() ![]() ![]() |
|
C. Deninger
and K. Schmidt
, Expansive algebraic of discrete residually finite amenable groups and their entropy, Ergod. Th. Dynamical Sys., 27 (2007)
, 769-786.
doi: 10.1017/S0143385706000939.![]() ![]() ![]() |
|
M. Denker, C. Grillenberger and K. Sigmund,
Ergodic Theory on Compact Spaces,
Lecture Notes in Mathematics, Vol. 527. Springer-Verlag, Berlin-New York, 1976.
![]() |
|
M. Einsiedler and T. Ward,
Ergodic Theory with a View Towards Number Theory,
Graduate Texts in Mathematics, vol. 259, Springer-Verlag London Ltd., London, 2011.
doi: 978-0-85729-020-5.![]() ![]() ![]() |
|
M. Hirayama
, Periodic probability measures are dense in the set of invariant measures, Dist. Cont. Dyn. Sys., 9 (2003)
, 1185-1192.
doi: 10.3934/dcds.2003.9.1185.![]() ![]() ![]() |
|
W. Huang
, X. Ye
and G. Zhang
, Local entropy for a countable discrete amenable group action, J. Funct. Anal., 261 (2011)
, 1028-1082.
doi: 10.1016/j.jfa.2011.04.014.![]() ![]() ![]() |
|
C. Liang
, G. Liu
and W. Sun
, Approxiamation properties on invariant measures and Oseledec splitting in non-uniformly hyperbolic systems, Trans. Amer. Math. Soc., 361 (2009)
, 1543-1579.
![]() ![]() |
|
E. Lindenstrauss
, Pointwise theorems for amenable groups, Electronic Research Announcements of the American Mathematical Society, 5 (1999)
, 82-90.
doi: 10.1090/S1079-6762-99-00065-7.![]() ![]() ![]() |
|
E. Lindenstauss
, Pointwise theorems for amenable groups, Invention. Math., 146 (2001)
, 259-295.
doi: 10.1007/s002220100162.![]() ![]() ![]() |
|
K. Oliverira
and X. Tian
, Non-uniform hyperbolicity and non-uniform specification, Trans. Amer. Math. Soc., 365 (2013)
, 4371-4392.
doi: 10.1090/S0002-9947-2013-05819-9.![]() ![]() ![]() |
|
D. Ornstein
and B. Weiss
, Entropy and isomorphism theorems for actions of amenable groups, J. Anal. Math., 48 (1987)
, 1-141.
doi: 10.1007/BF02790325.![]() ![]() ![]() |
|
C.-E. Pfister
and W. Sullivan
, On the topological entropy of saturated sets, Ergod. Th. Dynamical Sys., 27 (2007)
, 929-956.
doi: 10.1017/S0143385706000824.![]() ![]() ![]() |
|
D. Ruelle
, Statisticle mechanics on a compact set with $Z^{ν}$ actions satisfying expansiveness and specification, Trans. Amer. Math. Soc., 187 (1973)
, 237-251.
![]() ![]() |
|
K. Sigmund
, Generic properties of invariant measures for Axiom A-diffeomorphisms, Invent. Math., 11 (1970)
, 99-109.
doi: 10.1007/BF01404606.![]() ![]() ![]() |
|
K. Sigmund
, On dynamical systems with specification property, Trans, Amer, Math. Soc., 190 (1974)
, 285-299.
doi: 10.1090/S0002-9947-1974-0352411-X.![]() ![]() ![]() |
|
D. Tompson
, Irregular sets, the beta-transformation and the almost specification property, Trans. Am. Math. Soc., 364 (2012)
, 5395-5414.
doi: 10.1090/S0002-9947-2012-05540-1.![]() ![]() ![]() |
|
T. Ward
and Q. Zhang
, The Abramov-Rokhlin entropy addition formular for amenable group actions, Monatsh. Math., 114 (1992)
, 317-329.
doi: 10.1007/BF01299386.![]() ![]() ![]() |
|
B. Weiss
, Monotileable amenable groups, Topology, Ergodic Theory, Real Algebraic Geometry,
in: Amer. Math. Soc. Transl. Ser. 2, vol. 202, Amer. Math. Soc., Providence, RI, (2001)
, 257-262.
![]() ![]() |
|
D. Zheng, E. Chen and J. Yang, On large deviations for amenable group actions, Discrete
Contin. Dyn. Syst., 36 (2016), 7191-7206, arXiv:1507.05130.
doi: 10.3934/dcds.2016113.![]() ![]() ![]() |