
-
Previous Article
Reflected backward stochastic differential equations with perturbations
- DCDS Home
- This Issue
-
Next Article
Physical measures for certain class of non-uniformly hyperbolic endomorphisms on the solid torus
$C^1$ weak Palis conjecture for nonsingular flows
1. | School of Mathematical Sciences, Peking University, Beijing 100871, China |
2. | Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190, China |
3. | University of Chinese Academy of Sciences, Beijing 100049, China |
This paper focuses on generic properties of continuous dynamical systems. We prove $C^1$ weak Palis conjecture for nonsingular flows: Morse-Smale vector fields and vector fields admitting horseshoes are open and dense among $C^1$ nonsingular vector fields.
Our arguments contain three main ingredients: linear Poincaré flow, Liao's selecting lemma and the adapting of Crovisier's central model.
Firstly, by studying the linear Poincaré flow, we prove for a $C^1$ generic vector field away from horseshoes, any non-trivial nonsingular chain recurrent class contains a minimal set which is partially hyperbolic with 1-dimensional center with respect to the linear Poincaré flow.
Secondly, to understand the neutral behaviour of the 1-dimensional center, we adapt Crovisier's central model. The difficulties are that we can not build invariant plaque family of any time, the periodic point of a flow is not periodic for the discrete time map. Through delicate analysis of the center manifold of a periodic orbit near the partially hyperbolic set, we manage to yield nice periodic points such that their stable manifolds and unstable manifolds are well-placed for transverse intersection.
References:
[1] |
F. Abdenur, C. Bonatti and S. Crovisier,
Nonuniform hyperbolicity for $C^1$-generic diffeomorphisms, Israel J. Math., 183 (2011), 1-60.
doi: 10.1007/s11856-011-0041-5. |
[2] |
A. Arroyo and F. Rodriguez Hertz,
Homoclinic bifurcations and uniform hyperbolicity for three dimensional flows, Ann. I. H. Poincaré-AN, 20 (2003), 805-841.
doi: 10.1016/S0294-1449(03)00016-7. |
[3] |
C. Bonatti and S. Crovisier,
Récurrence et généricité, Invent. Math., 158 (2004), 33-104.
|
[4] |
C. Bonatti, S. Gan and L. Wen,
On the existence of non-trivial homoclinic classes, Ergodic Theory Dynam. Systems, 27 (2007), 1473-1508.
|
[5] |
C. Bonatti, S. Gan and D. Yang,
Dominated chain recurrent classes with singularities, Ann. Sc. Norm. Super. Pisa Cl. Sci.(5), 14 (2015), 83-99.
|
[6] |
C. Conley,
Isolated Invariant Sets and the Morse Index, Regional Conference Series in Mathematics, 38. American Mathematical Society, Providence, R. I., 1978.
doi: 0-8218-1688-8. |
[7] |
S. Crovisier,
Periodic orbits and chain transitive sets of $C^1$-diffeomorphisms, Publ. Math. Inst. Hautes Études Sci., 104 (2006), 87-141.
|
[8] |
S. Crovisier,
Birth of homoclinic intersections: A model for the central dynamics of partially hyperbolic systems, Ann. Math., 172 (2010), 1641-1677.
doi: 10.4007/annals.2010.172.1641. |
[9] |
J. Franks and J. Selgrade,
Hyperbolicity and chain recurrence, J. Diff. Equa., 26 (1977), 27-36.
doi: 10.1016/0022-0396(77)90096-1. |
[10] |
S. Gan and L. Wen,
Nonsingular star flows satisfy Axiom A and the no-cycle condition, Invent. Math., 164 (2006), 279-315.
doi: 10.1007/s00222-005-0479-3. |
[11] |
S. Gan and D. Yang, Morse-Smale systems and horseshoes for three dimensional singular flows,
J. Eur. Math. Soc., to appear. |
[12] |
J. Guchenheimer and R. Williams,
Structural stability of Lorenz attractors, Publ. Math. Inst. Hautes Études Sci., 50 (1979), 59-72.
|
[13] |
M. Hirsch, C. Pugh and M. Shub,
Invariant Manifolds, Lecture Notes in Mathematics, Vol. 583. Springer-Verlag, Berlin-New York, 1977. |
[14] |
M. Li, S. Gan and L. Wen,
Robustly transitive singular sets via approach of extended linear Poincaré flow, Disc. Cont. Dynam. Syst., 13 (2005), 239-269.
doi: 10.3934/dcds.2005.13.239. |
[15] |
S. Liao,
Qualitative Theory of Differentiable Dyamical Systems, China Science Press, Beijing, 1996.
doi: 9787030054371. |
[16] |
S. Liao,
Obstruction sets(Ⅰ), Acta Math. Sinica, 23 (1980), 411-453.
|
[17] |
S. Liao,
On $(η,d)$
-contractible orbits of vector fields, Systems Science and Math. Sciences, 2 (1989), 193-227.
|
[18] |
C. Morales, M. Pacifico and E. Pujals,
Robust transitive singular sets for 3-flows are partially hyperbolic attractors or repellers, Ann. Math., 160 (2004), 375-432.
doi: 10.4007/annals.2004.160.375. |
[19] |
J. Palis,
A global view of dynamics and a conjecture on the denseness of finitude of attractors, Géométrie complexe et systemes dynamiques, Astérisque, 261 (2000), 335-347.
|
[20] |
J. Palis,
A global perspective for non-conservative dynamics, Ann. I. H. Poincaré, 22 (2005), 485-507.
doi: 10.1016/j.anihpc.2005.01.001. |
[21] |
J. Palis and W. de Melo,
Geometric Theory of Dynamical Systems, An introduction, Translated from the Portuguese by A. K. Manning, Springer-Verlag, New York-Berlin, 1982.
doi: 0-387-90668-1. |
[22] |
J. Palis and S. Smale, Structural stability theorems, Amer. Math. Soc. , Providence, R. I. 1970
Global Analysis, 223–231. |
[23] |
M. Peixoto,
Structural stability on two dimensional manifolds, Topology, 1 (1962), 101-120.
doi: 10.1016/0040-9383(65)90018-2. |
[24] |
E. Pujals and M. Sambarino,
Homoclinic tangencies and hyperbolicity for surface diffeomorphisms, Ann. Math., 151 (2000), 961-1023.
doi: 10.2307/121127. |
[25] |
Y. Shi, S. Gan and L. Wen,
On the singular hyperbolicity of star flows, J. Mod. Dyn., 8 (2014), 191-219.
doi: 10.3934/jmd.2014.8.191. |
[26] |
S. Smale,
On gradient dynamical systems, Ann. Math.(2), 74 (1961), 199-206.
doi: 10.2307/1970311. |
[27] |
S. Smale, Diffeomorphisms with many periodic points, in 1965 Differential and Combinatorial
Topology (A Symposium in Honor of Marston Morse), Princeton Univ. Press, Princeton, N. J.,
(1965), 63–80. |
[28] |
S. Smale,
Differentiable dynamical systems, Bull. Amer. Math. Soc., 73 (1967), 747-817.
doi: 10.1090/S0002-9904-1967-11798-1. |
[29] |
S. Smale,
The Mathematics of Time, Essays on dynamical systems, economic processes, and related topics, Springer-Verlag, New York-Heidelberg-Berlin, 1980. |
[30] |
L. Wen,
Homoclinic tangencies and dominated splittings, Nonlinearity, 15 (2002), 1445-1469.
doi: 10.1088/0951-7715/15/5/306. |
[31] |
L. Wen,
Generic diffeomorphisms away from homoclinic tangencies and heterodimensional cycles, Bull. Braz. Math. Soc.(N.S.), 35 (2004), 419-452.
doi: 10.1007/s00574-004-0023-x. |
[32] |
L. Wen,
The selecting lemma of Liao, Disc. Cont. Dynam. Syst., 20 (2008), 159-175.
|
[33] |
L. Wen,
Differential Dyamical Systems, Higher Education Press, 2015(in Chinese). |
[34] |
L. Wen and Z. Xia,
$C^1$ connecting lemmas, Trans. Amer. Math. Soc., 352 (2000), 5213-5230.
doi: 10.1090/S0002-9947-00-02553-8. |
[35] |
Q. Xiao, Estimates of products of norms for flows away from homoclinic tangency. arXiv: 1705.04072. |
[36] |
R. Zheng,
Partially Hyperbolicity of Vector Fields Away from Horseshoe, Ph. D thesis, Peking University, 2015. |
[37] |
S. Zhu, S. Gan and L. Wen,
Indices of singularities of robustly transitive sets, Disc. Cont. Dynam. Syst., 21 (2008), 945-957.
doi: 10.3934/dcds.2008.21.945. |
show all references
References:
[1] |
F. Abdenur, C. Bonatti and S. Crovisier,
Nonuniform hyperbolicity for $C^1$-generic diffeomorphisms, Israel J. Math., 183 (2011), 1-60.
doi: 10.1007/s11856-011-0041-5. |
[2] |
A. Arroyo and F. Rodriguez Hertz,
Homoclinic bifurcations and uniform hyperbolicity for three dimensional flows, Ann. I. H. Poincaré-AN, 20 (2003), 805-841.
doi: 10.1016/S0294-1449(03)00016-7. |
[3] |
C. Bonatti and S. Crovisier,
Récurrence et généricité, Invent. Math., 158 (2004), 33-104.
|
[4] |
C. Bonatti, S. Gan and L. Wen,
On the existence of non-trivial homoclinic classes, Ergodic Theory Dynam. Systems, 27 (2007), 1473-1508.
|
[5] |
C. Bonatti, S. Gan and D. Yang,
Dominated chain recurrent classes with singularities, Ann. Sc. Norm. Super. Pisa Cl. Sci.(5), 14 (2015), 83-99.
|
[6] |
C. Conley,
Isolated Invariant Sets and the Morse Index, Regional Conference Series in Mathematics, 38. American Mathematical Society, Providence, R. I., 1978.
doi: 0-8218-1688-8. |
[7] |
S. Crovisier,
Periodic orbits and chain transitive sets of $C^1$-diffeomorphisms, Publ. Math. Inst. Hautes Études Sci., 104 (2006), 87-141.
|
[8] |
S. Crovisier,
Birth of homoclinic intersections: A model for the central dynamics of partially hyperbolic systems, Ann. Math., 172 (2010), 1641-1677.
doi: 10.4007/annals.2010.172.1641. |
[9] |
J. Franks and J. Selgrade,
Hyperbolicity and chain recurrence, J. Diff. Equa., 26 (1977), 27-36.
doi: 10.1016/0022-0396(77)90096-1. |
[10] |
S. Gan and L. Wen,
Nonsingular star flows satisfy Axiom A and the no-cycle condition, Invent. Math., 164 (2006), 279-315.
doi: 10.1007/s00222-005-0479-3. |
[11] |
S. Gan and D. Yang, Morse-Smale systems and horseshoes for three dimensional singular flows,
J. Eur. Math. Soc., to appear. |
[12] |
J. Guchenheimer and R. Williams,
Structural stability of Lorenz attractors, Publ. Math. Inst. Hautes Études Sci., 50 (1979), 59-72.
|
[13] |
M. Hirsch, C. Pugh and M. Shub,
Invariant Manifolds, Lecture Notes in Mathematics, Vol. 583. Springer-Verlag, Berlin-New York, 1977. |
[14] |
M. Li, S. Gan and L. Wen,
Robustly transitive singular sets via approach of extended linear Poincaré flow, Disc. Cont. Dynam. Syst., 13 (2005), 239-269.
doi: 10.3934/dcds.2005.13.239. |
[15] |
S. Liao,
Qualitative Theory of Differentiable Dyamical Systems, China Science Press, Beijing, 1996.
doi: 9787030054371. |
[16] |
S. Liao,
Obstruction sets(Ⅰ), Acta Math. Sinica, 23 (1980), 411-453.
|
[17] |
S. Liao,
On $(η,d)$
-contractible orbits of vector fields, Systems Science and Math. Sciences, 2 (1989), 193-227.
|
[18] |
C. Morales, M. Pacifico and E. Pujals,
Robust transitive singular sets for 3-flows are partially hyperbolic attractors or repellers, Ann. Math., 160 (2004), 375-432.
doi: 10.4007/annals.2004.160.375. |
[19] |
J. Palis,
A global view of dynamics and a conjecture on the denseness of finitude of attractors, Géométrie complexe et systemes dynamiques, Astérisque, 261 (2000), 335-347.
|
[20] |
J. Palis,
A global perspective for non-conservative dynamics, Ann. I. H. Poincaré, 22 (2005), 485-507.
doi: 10.1016/j.anihpc.2005.01.001. |
[21] |
J. Palis and W. de Melo,
Geometric Theory of Dynamical Systems, An introduction, Translated from the Portuguese by A. K. Manning, Springer-Verlag, New York-Berlin, 1982.
doi: 0-387-90668-1. |
[22] |
J. Palis and S. Smale, Structural stability theorems, Amer. Math. Soc. , Providence, R. I. 1970
Global Analysis, 223–231. |
[23] |
M. Peixoto,
Structural stability on two dimensional manifolds, Topology, 1 (1962), 101-120.
doi: 10.1016/0040-9383(65)90018-2. |
[24] |
E. Pujals and M. Sambarino,
Homoclinic tangencies and hyperbolicity for surface diffeomorphisms, Ann. Math., 151 (2000), 961-1023.
doi: 10.2307/121127. |
[25] |
Y. Shi, S. Gan and L. Wen,
On the singular hyperbolicity of star flows, J. Mod. Dyn., 8 (2014), 191-219.
doi: 10.3934/jmd.2014.8.191. |
[26] |
S. Smale,
On gradient dynamical systems, Ann. Math.(2), 74 (1961), 199-206.
doi: 10.2307/1970311. |
[27] |
S. Smale, Diffeomorphisms with many periodic points, in 1965 Differential and Combinatorial
Topology (A Symposium in Honor of Marston Morse), Princeton Univ. Press, Princeton, N. J.,
(1965), 63–80. |
[28] |
S. Smale,
Differentiable dynamical systems, Bull. Amer. Math. Soc., 73 (1967), 747-817.
doi: 10.1090/S0002-9904-1967-11798-1. |
[29] |
S. Smale,
The Mathematics of Time, Essays on dynamical systems, economic processes, and related topics, Springer-Verlag, New York-Heidelberg-Berlin, 1980. |
[30] |
L. Wen,
Homoclinic tangencies and dominated splittings, Nonlinearity, 15 (2002), 1445-1469.
doi: 10.1088/0951-7715/15/5/306. |
[31] |
L. Wen,
Generic diffeomorphisms away from homoclinic tangencies and heterodimensional cycles, Bull. Braz. Math. Soc.(N.S.), 35 (2004), 419-452.
doi: 10.1007/s00574-004-0023-x. |
[32] |
L. Wen,
The selecting lemma of Liao, Disc. Cont. Dynam. Syst., 20 (2008), 159-175.
|
[33] |
L. Wen,
Differential Dyamical Systems, Higher Education Press, 2015(in Chinese). |
[34] |
L. Wen and Z. Xia,
$C^1$ connecting lemmas, Trans. Amer. Math. Soc., 352 (2000), 5213-5230.
doi: 10.1090/S0002-9947-00-02553-8. |
[35] |
Q. Xiao, Estimates of products of norms for flows away from homoclinic tangency. arXiv: 1705.04072. |
[36] |
R. Zheng,
Partially Hyperbolicity of Vector Fields Away from Horseshoe, Ph. D thesis, Peking University, 2015. |
[37] |
S. Zhu, S. Gan and L. Wen,
Indices of singularities of robustly transitive sets, Disc. Cont. Dynam. Syst., 21 (2008), 945-957.
doi: 10.3934/dcds.2008.21.945. |


[1] |
Radosław Czaja, Waldyr M. Oliva, Carlos Rocha. On a definition of Morse-Smale evolution processes. Discrete and Continuous Dynamical Systems, 2017, 37 (7) : 3601-3623. doi: 10.3934/dcds.2017155 |
[2] |
Ming-Chia Li. Stability of parameterized Morse-Smale gradient-like flows. Discrete and Continuous Dynamical Systems, 2003, 9 (4) : 1073-1077. doi: 10.3934/dcds.2003.9.1073 |
[3] |
Vladislav Kibkalo, Tomoo Yokoyama. Topological characterizations of Morse-Smale flows on surfaces and generic non-Morse-Smale flows. Discrete and Continuous Dynamical Systems, 2022 doi: 10.3934/dcds.2022072 |
[4] |
Bin Yu. Behavior $0$ nonsingular Morse Smale flows on $S^3$. Discrete and Continuous Dynamical Systems, 2016, 36 (1) : 509-540. doi: 10.3934/dcds.2016.36.509 |
[5] |
Ming Li, Shaobo Gan, Lan Wen. Robustly transitive singular sets via approach of an extended linear Poincaré flow. Discrete and Continuous Dynamical Systems, 2005, 13 (2) : 239-269. doi: 10.3934/dcds.2005.13.239 |
[6] |
Shuhei Hayashi. A forward Ergodic Closing Lemma and the Entropy Conjecture for nonsingular endomorphisms away from tangencies. Discrete and Continuous Dynamical Systems, 2020, 40 (4) : 2285-2313. doi: 10.3934/dcds.2020114 |
[7] |
Leo Howden, Donald Giddings, Henry Power, Michael Vloeberghs. Three-dimensional cerebrospinal fluid flow within the human central nervous system. Discrete and Continuous Dynamical Systems - B, 2011, 15 (4) : 957-969. doi: 10.3934/dcdsb.2011.15.957 |
[8] |
Ángela Jiménez-Casas, Aníbal Rodríguez-Bernal. Linear model of traffic flow in an isolated network. Conference Publications, 2015, 2015 (special) : 670-677. doi: 10.3934/proc.2015.0670 |
[9] |
Shuhei Hayashi. Erratum and addendum to "A forward Ergodic Closing Lemma and the Entropy Conjecture for nonsingular endomorphisms away from tangencies" (Volume 40, Number 4, 2020, 2285-2313). Discrete and Continuous Dynamical Systems, 2022, 42 (5) : 2433-2437. doi: 10.3934/dcds.2021196 |
[10] |
Mi-Ho Giga, Yoshikazu Giga, Ryo Kuroda, Yusuke Ochiai. Crystalline flow starting from a general polygon. Discrete and Continuous Dynamical Systems, 2022, 42 (4) : 2027-2051. doi: 10.3934/dcds.2021182 |
[11] |
Huijing Sun, Hongjun Cao. The damping term makes the Smale-horseshoe heteroclinic chaotic motion easier. Discrete and Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021247 |
[12] |
Alexander Kurganov, Anthony Polizzi. Non-oscillatory central schemes for traffic flow models with Arrhenius look-ahead dynamics. Networks and Heterogeneous Media, 2009, 4 (3) : 431-451. doi: 10.3934/nhm.2009.4.431 |
[13] |
Qiumei Huang, Xiaofeng Yang, Xiaoming He. Numerical approximations for a smectic-A liquid crystal flow model: First-order, linear, decoupled and energy stable schemes. Discrete and Continuous Dynamical Systems - B, 2018, 23 (6) : 2177-2192. doi: 10.3934/dcdsb.2018230 |
[14] |
Sergey A. Suslov. Two-equation model of mean flow resonances in subcritical flow systems. Discrete and Continuous Dynamical Systems - S, 2008, 1 (1) : 165-176. doi: 10.3934/dcdss.2008.1.165 |
[15] |
Tong Li, Kun Zhao. On a quasilinear hyperbolic system in blood flow modeling. Discrete and Continuous Dynamical Systems - B, 2011, 16 (1) : 333-344. doi: 10.3934/dcdsb.2011.16.333 |
[16] |
Ling-Bing He, Li Xu. On the compressible Navier-Stokes equations in the whole space: From non-isentropic flow to isentropic flow. Discrete and Continuous Dynamical Systems, 2021, 41 (7) : 3489-3530. doi: 10.3934/dcds.2021005 |
[17] |
Fabio Camilli, Adriano Festa, Silvia Tozza. A discrete Hughes model for pedestrian flow on graphs. Networks and Heterogeneous Media, 2017, 12 (1) : 93-112. doi: 10.3934/nhm.2017004 |
[18] |
Gabriella Bretti, Roberto Natalini, Benedetto Piccoli. Numerical approximations of a traffic flow model on networks. Networks and Heterogeneous Media, 2006, 1 (1) : 57-84. doi: 10.3934/nhm.2006.1.57 |
[19] |
Tong Li, Sunčica Čanić. Critical thresholds in a quasilinear hyperbolic model of blood flow. Networks and Heterogeneous Media, 2009, 4 (3) : 527-536. doi: 10.3934/nhm.2009.4.527 |
[20] |
Gabriella Bretti, Roberto Natalini, Benedetto Piccoli. Fast algorithms for the approximation of a traffic flow model on networks. Discrete and Continuous Dynamical Systems - B, 2006, 6 (3) : 427-448. doi: 10.3934/dcdsb.2006.6.427 |
2020 Impact Factor: 1.392
Tools
Metrics
Other articles
by authors
[Back to Top]