We observe that some self-similar measures defined by finite or infinite iterated function systems with overlaps are in certain sense essentially of finite type, which allows us to extract useful measure-theoretic properties of iterates of the measure. We develop a technique to obtain a closed formula for the spectral dimension of the Laplacian defined by a self-similar measure satisfying this condition. For Laplacians defined by fractal measures with overlaps, spectral dimension has been obtained earlier only for a small class of one-dimensional self-similar measures satisfying Strichartz second-order self-similar identities. The main technique we use relies on the vector-valued renewal theorem proved by Lau, Wang and Chu[
Citation: |
Figure 2. Level-$k$ islands $ \mathbb{I}_k$ for $k = 0, 1, 2, 3$ in Example 3.3. $\mathbb I_1 = \{\mathcal{I}_{1, 0}, \mathcal{I}_{1, 1}\}$ corresponds to the basic family of cells and $\mathcal{I}_{k, 1, 2}$ is the unique level-$k$ nonbasic island with respect to $\mathbb I_1$ for $k\ge 2$. $W_k$ corresponds to those iterates in $S_{\mathcal{I}_{k+1, 1, 2}}(\Omega)$ that overlap exactly and hence give rise to the same vertex. Islands that are labeled consist of vertices enclosed by a box. The figure is drawn with $r_1 = 1/3$ and $r_2 = 2/7$
Figure 4. Figure showing some cells in a $\mu$-partition ${\mathbf P}_{k, \ell}$ of $B_{1, \ell}$ for $k = 1, 2$ and $\ell \in \Gamma $, as defined in the proof of Example 3.6. ${\mathbf B}: = \{B_{1, \ell}:\ell\in \Gamma\}$ is a basic family of cells. Cells are represented by line segments with dots if they originate from $\Omega_1$, or circles if they originate from $\Omega_2$. Overlapping cells are separated vertically to show distinction and multiplicity
Figure 7. Islands, semi-tails, and tails for an IIFS in (1.11). The figure is drawn by using $r = 1/4$ and $s = 2/3$ and by assuming that (1.12) holds with $L = 2$. $\mathcal{T}_{1, 2}$, $\mathcal{T}_{2, 1, 1}$, and $\mathcal{T}_{2, 1, 2}$ are defined in Lemma 6.12 and the proof of Example 6.7. They consist of islands enclosed by a box. $\mathcal{T}_{1, 2}$ is the only level-$1$ tail (Lemma 6.12). One can verify directly that $\mathcal{T}_{2, 1, 1}$ is a tail with the set $\mathbb{B}$ in Definition 6.1 consisting of the island on its left. $\mathcal{T}_{2, 1, 2}$ is a semi-tail but not a tail; an analogous $\mathbb{B}$ cannot be found, and thus condition (3) of Definition 6.1 is not satisfied
Figure 8. Figure showing some iterates of the IIFS $\{S_i\}_{i = 1}^\infty$ in (1.11), drawn by using $r = 1/4$ and $s = 2/3$ and by assuming that (1.12) holds with $L = 2$. Using the notation in the proof of Example 6.7, we see that $\{\mathcal{I}_{1, 0}, \mathcal{I}_{1, 1}, \mathcal{T}_{1, 2}\}$ corresponds to a basic family of cells, and $\mathcal{I}_{k, 1, 1}^{2}$ is the only level-$k$ nonbasic island with respect to $\mathbf{I}_1$. $W_{k, 1}$ corresponds to those iterates in $S_{\mathcal{I}_{{k+1}, 1, 1}^2}(\Omega)$ that overlap exactly and hence give rise to the same vertex. All nonbasic islands are boxed
P. Alonso-Ruiz
and U. R. Freiberg
, Weyl asymptotics for Hanoi attractors, Forum Math., (2017)
, 1003-1021.
![]() ![]() |
|
E. Ayer
and R. S. Strichartz
, Exact Hausdorff measure and intervals of maximum density for Cantor sets, Trans. Amer. Math. Soc., 351 (1999)
, 3725-3741.
doi: 10.1090/S0002-9947-99-01982-0.![]() ![]() ![]() |
|
R. Courant
, Über die Schwinggungen eingespannter Platten, Math. Z., 15 (1922)
, 195-200.
doi: 10.1007/BF01494393.![]() ![]() ![]() |
|
D. Croydon
and B. Hambly
, Self-similarity and spectral asymptotics for the continuum random tree, Stochastic Process. Appl., 118 (2008)
, 730-754.
doi: 10.1016/j.spa.2007.06.005.![]() ![]() ![]() |
|
M. Das
and S.-M. Ngai
, Graph-directed iterated function systems with overlaps, Indiana Univ. Math. J., 53 (2004)
, 109-134.
doi: 10.1512/iumj.2004.53.2342.![]() ![]() ![]() |
|
G. Deng
and S.-M. Ngai
, Differentiability of $L^q$-spectrum and multifractal decomposition by using infinite graph-directed IFSs, Adv. Math., 311 (2017)
, 190-237.
doi: 10.1016/j.aim.2017.02.021.![]() ![]() ![]() |
|
J. J. Duistermaat
and V. W. Guillemin
, The spectrum of positive elliptic operators and periodic bicharacteristics, Invent. Math., (1975)
, 39-79.
doi: 10.1007/BF01405172.![]() ![]() ![]() |
|
K. J. Falconer, Techniques in Fractal Geometry, Wiley, 1997.
![]() ![]() |
|
U. Freiberg
, Spectral asymptotics of generalized measure geometric Laplacians on Cantor like sets, Forum Math., 17 (2005)
, 87-104.
![]() ![]() |
|
T. Fujita, A fractional dimension, self-similarity and a generalized diffusion operator, Probabilistic methods in mathematical physics (Katata/Kyoto, 1985), 83-90, Academic Press, Boston, MA, 1987.
![]() ![]() |
|
B. M. Hambly
, On the asymptotics of the eigenvalue counting function for random recursive Sierpinski gaskets, Probab. Theory Related Fields, 117 (2000)
, 221-247.
doi: 10.1007/s004400050005.![]() ![]() ![]() |
|
B. M. Hambly
and S. O. G. Nyberg
, Finitely ramified graph-directed fractals, spectral asymptotics and the multidimensional renewal theorem, Proc. Edinb. Math. Soc., 46 (2003)
, 1-34.
![]() ![]() |
|
J. Hu
, K.-S. Lau
and S.-M. Ngai
, Laplace operators related to self-similar measures on $\mathbb{R}^d$, J. Funct. Anal., 239 (2006)
, 542-565.
doi: 10.1016/j.jfa.2006.07.005.![]() ![]() ![]() |
|
J. E. Hutchinson
, Fractals and self-similarity, Indiana Univ. Math. J., 30 (1981)
, 713-747.
doi: 10.1512/iumj.1981.30.30055.![]() ![]() ![]() |
|
V. Ivrii
, Second term of the spectral asymptotic expansion of a Laplace-Beltrami operator on manifolds with boundary, Funktsional. Anal. i Prilozhen, 14 (1980)
, 25-34.
![]() ![]() |
|
N. Jin
and S. S. T. Yau
, General finite type IFS and $M$-matrix, Comm. Anal. Geom., 13 (2005)
, 821-843.
doi: 10.4310/CAG.2005.v13.n4.a8.![]() ![]() ![]() |
|
N. Kajino
, Spectral asymptotics for Laplacians on self-similar sets, J. Funct. Anal., 258 (2010)
, 1310-1360.
doi: 10.1016/j.jfa.2009.11.001.![]() ![]() ![]() |
|
N. Kajino
, Log-periodic asymptotic expansion of the spectral partition function for self-similar sets, Comm. Math. Phys., 328 (2014)
, 1341-1370.
doi: 10.1007/s00220-014-1922-3.![]() ![]() ![]() |
|
J. Kigami
and M. L. Lapidus
, Weyl's problem for the spectral distribution of Laplacians on p.c.f. self-similar fractals, Comm. Math. Phys., 158 (1993)
, 93-125.
doi: 10.1007/BF02097233.![]() ![]() ![]() |
|
M. L. Lapidus
, Fractal drum, inverse spectral problems for elliptic operators and a partial resolution of the Weyl-Berry conjecture, Trans. Amer. Math. Soc., 325 (1991)
, 465-529.
doi: 10.1090/S0002-9947-1991-0994168-5.![]() ![]() ![]() |
|
K.-S. Lau
and S.-M. Ngai
, $L^q$-spectrum of the Bernoulli convolution associated with the golden ratio, Studia Math., 131 (1998)
, 225-251.
![]() ![]() |
|
K.-S. Lau
and S.-M. Ngai
, A generalized finite type condition for iterated function systems, Adv. Math., 208 (2007)
, 647-671.
doi: 10.1016/j.aim.2006.03.007.![]() ![]() ![]() |
|
K.-S. Lau
and X.-Y. Wang
, Iterated function systems with a weak separation condition, Studia Math., 161 (2004)
, 249-268.
doi: 10.4064/sm161-3-3.![]() ![]() ![]() |
|
K.-S. Lau
, J. Wang
and C.-H. Chu
, Vector-valued Choquet-Deny theorem, renewal equation and self-similar measures, Studia Math., 117 (1995)
, 1-28.
doi: 10.4064/sm-117-1-1-28.![]() ![]() ![]() |
|
B. M. Levitan
, On a theorem of H. Weyl, Doklady Akad. Nauk SSSR (N.S.), 82 (1952)
, 673-676.
![]() ![]() |
|
V. G. Maz'ja,
Sobolev Spaces, Springer-Verlag, Berlin, 1985.
![]() ![]() |
|
R. D. Mauldin
and M. Urbański
, Dimensions and measures in infinite iterated function systems, Proc. London Math. Soc. (3), 73 (1996)
, 105-154.
![]() ![]() |
|
R. D. Mauldin
and S. C. Williams
, Hausdorff dimension in graph directed constructions, Trans. Amer. Math. Soc., 309 (1988)
, 811-829.
doi: 10.1090/S0002-9947-1988-0961615-4.![]() ![]() ![]() |
|
H. P. McKean
and D. B. Ray
, Spectral distribution of a differential operator, Duke Math. J., (1962)
, 281-292.
doi: 10.1215/S0012-7094-62-02928-9.![]() ![]() ![]() |
|
K. Naimark
and M. Solomyak
, The eigenvalue behaviour for the boundary value problems related to self-similar measures on $\mathbb{R}^ d$, Math. Res. Lett., 2 (1995)
, 279-298.
doi: 10.4310/MRL.1995.v2.n3.a5.![]() ![]() ![]() |
|
S.-M. Ngai
, Spectral asymptotics of Laplacians associated with one-dimensional iterated function systems with overlaps, Canad. J. Math., 63 (2011)
, 648-688.
doi: 10.4153/CJM-2011-011-3.![]() ![]() ![]() |
|
S.-M. Ngai
and J.-X. Tong
, Infinite iterated function systems with overlaps, Ergodic Theory Dynam. Systems, 36 (2016)
, 890-907.
doi: 10.1017/etds.2014.86.![]() ![]() ![]() |
|
S.-M. Ngai
and Y. Wang
, Hausdorff dimension of self-similar sets with overlaps, J. London Math. Soc. (2), 63 (2001)
, 655-672.
doi: 10.1017/S0024610701001946.![]() ![]() ![]() |
|
S. -M. Ngai and Y. Xie,
$L^q$-spectrum of self-similar measures with overlaps in the absence of second-order identities,
J. Aust. Math. Soc. , to appear.
![]() |
|
Y. Peres, W. Schlag and B. Solomyak, Sixty years of Bernoulli convolutions, Fractal Geometry and Stochastics, Ⅱ, (Greifswald/Koserow, 1998), 39-65, Progr. Probab., 46, Birkhäuser, Basel, 2000.
![]() ![]() |
|
A. Schief
, Separation properties for self-similar sets, Proc. Amer. Math. Soc., 122 (1994)
, 111-115.
doi: 10.1090/S0002-9939-1994-1191872-1.![]() ![]() ![]() |
|
R. Seeley
, A sharp asymptotic remainder estimate for the eigenvalues of the Laplacian in a domain of $\mathbb{R}^3$, Adv. in Math., (1978)
, 244-269.
doi: 10.1016/0001-8708(78)90013-0.![]() ![]() ![]() |
|
R. S. Strichartz
, A. Taylor
and T. Zhang
, Densities of self-similar measures on the line, Experiment. Math., 4 (1995)
, 101-128.
doi: 10.1080/10586458.1995.10504313.![]() ![]() ![]() |
|
T. Szarek
and S. Wedrychowicz
, The OSC does not imply the SOSC for infinite iterated function systems, Proc. Amer. Math. Soc., 133 (2005)
, 437-440.
doi: 10.1090/S0002-9939-04-07708-1.![]() ![]() ![]() |
|
H. Weyl
, Das asymptotische Verteilungsgesetz der Eigenwerte linearer partieller Differentialgleichungen (mit einer Anwendung auf die Theorie der Hohlraumstrahlung), Math. Ann., 71 (1912)
, 441-479.
doi: 10.1007/BF01456804.![]() ![]() ![]() |
First iteration of an IIFS
First iteration of an IFS
Level-
The first iteration of the GIFS
Figure showing some cells in a
Iterates of the IFS
Islands, semi-tails, and tails for an IIFS in (1.11). The figure is drawn by using
Figure showing some iterates of the IIFS