# American Institute of Mathematical Sciences

April  2018, 38(4): 2079-2092. doi: 10.3934/dcds.2018085

## Minimization of the lowest eigenvalue for a vibrating beam

 1 LMIB and School of Mathematics and Systems Science, Beihang University, Beijing, China 2 School of Mathematical Sciences, University of Chinese Academy of Sciences, Beijing, China 3 LMIB and School of Mathematics and Systems Science, Beihang University, Beijing, China

* Corresponding author: Zhikun She; Email: zhikun.she@buaa.edu.cn

Received  May 2017 Published  January 2018

Fund Project: The third author is supported by the National Natural Science Foundation of China (Grant No. 11671378) and the Fund of UCAS. The fourth author is supported by the National Natural Science Foundation of China (Grants No. 11371047 and No. 11422111).

In this paper we solve the minimization problem of the lowest eigenvalue for a vibrating beam. Firstly, based on the variational method, we establish the basic theory of the lowest eigenvalue for the fourth order measure differential equation (MDE). Secondly, we build the relationship between the minimization problem of the lowest eigenvalue for the ODE and the one for the MDE. Finally, with the help of this built relationship, we find the explicit optimal bound of the lowest eigenvalue for a vibrating beam.

Citation: Quanyi Liang, Kairong Liu, Gang Meng, Zhikun She. Minimization of the lowest eigenvalue for a vibrating beam. Discrete and Continuous Dynamical Systems, 2018, 38 (4) : 2079-2092. doi: 10.3934/dcds.2018085
##### References:
 [1] M. Carter and B. van Brunt, The Lebesgue-Stieltjes Integral: A Practical Introduction Springer-Verlag, New York, 2000. [2] R. Courant and D. Hilbert, Methods of Mathematical Physics Wiley, New York, 1953. [3] Z. Halas and M. Tvrdý, Continuous dependence of solutions of generalized linear differential equations on a parameter, Funct. Differ. Equ., 16 (2009), 299-313. [4] X. Jiang, K. Liu, G. Meng and Z. She, Continuity of the eigenvalues for a vibrating beam, Appl. Math. Lett., 67 (2017), 60-66.  doi: 10.1016/j.aml.2016.12.006. [5] R. E. Megginson, An Introduction to Banach Space Theory Graduate Texts in Mathematics, 183 Springer-Verlag, New York, 1998. [6] G. Meng, Extremal problems for eigenvalues of measure differential equations, Proc. Amer. Math. Soc., 143 (2015), 1991-2002.  doi: 10.1090/S0002-9939-2015-12304-0. [7] G. Meng, P. Yan and M. Zhang, Minimization of eigenvalues of one-dimensional p-Laplacian with integrable potentials, J. Optim. Theory Appl., 156 (2013), 294-319.  doi: 10.1007/s10957-012-0125-3. [8] G. Meng and M. Zhang, Dependence of solutions and eigenvalues of measure differential equations on measures, J. Differential Eqautions, 254 (2013), 2196-2232.  doi: 10.1016/j.jde.2012.12.001. [9] A. B. Mingarelli, Volterra-Stieltjes Integral Equations and Generalized Ordinary Differential Expressions Lecture Notes Math., Vol. 989 Springer-Verlag, New York, 1983. [10] P. Savoye, Equimeasurable rearrangements of functions and fourth order boundary value problems, Rocky Mountain J. Math., 26 (1996), 281-293.  doi: 10.1216/rmjm/1181072116. [11] Š. Schwabik, Generalized Ordinary Differential Equations World Scientific, Singapore, 1992. [12] M. Tvrdý, Linear distributional differential equations of the second order, Math. Bohem., 119 (1994), 415-436. [13] M. Tvrdý, Differential and integral equations in the space of regulated functions, Mem. Differential Equations Math. Phys., 25 (2002), 1-104. [14] Q. Wei, G. Meng and M. Zhang, Extremal values of eigenvalues of Sturm-Liouville operators with potentials in L1 balls, J. Differential Equations, 247 (2009), 364-400.  doi: 10.1016/j.jde.2009.04.008. [15] P. Yan and M. Zhang, Continuity in weak topology and extremal problems of eigenvalues of the p-Laplacian, Trans. Amer. Math. Soc., 363 (2011), 2003-2028.  doi: 10.1090/S0002-9947-2010-05051-2. [16] M. Zhang, Extremal values of smallest eigenvalues of Hill's operators with potentials in L1 balls, J. Differential Equations, 246 (2009), 4188-4220.  doi: 10.1016/j.jde.2009.03.016. [17] M. Zhang, Minimization of the zeroth Neumann eigenvalues with integrable potentials, Ann. Inst. H.Poincaré Anal. Non Linéaire, 29 (2012), 501-523.  doi: 10.1016/j.anihpc.2012.01.007.

show all references

##### References:
 [1] M. Carter and B. van Brunt, The Lebesgue-Stieltjes Integral: A Practical Introduction Springer-Verlag, New York, 2000. [2] R. Courant and D. Hilbert, Methods of Mathematical Physics Wiley, New York, 1953. [3] Z. Halas and M. Tvrdý, Continuous dependence of solutions of generalized linear differential equations on a parameter, Funct. Differ. Equ., 16 (2009), 299-313. [4] X. Jiang, K. Liu, G. Meng and Z. She, Continuity of the eigenvalues for a vibrating beam, Appl. Math. Lett., 67 (2017), 60-66.  doi: 10.1016/j.aml.2016.12.006. [5] R. E. Megginson, An Introduction to Banach Space Theory Graduate Texts in Mathematics, 183 Springer-Verlag, New York, 1998. [6] G. Meng, Extremal problems for eigenvalues of measure differential equations, Proc. Amer. Math. Soc., 143 (2015), 1991-2002.  doi: 10.1090/S0002-9939-2015-12304-0. [7] G. Meng, P. Yan and M. Zhang, Minimization of eigenvalues of one-dimensional p-Laplacian with integrable potentials, J. Optim. Theory Appl., 156 (2013), 294-319.  doi: 10.1007/s10957-012-0125-3. [8] G. Meng and M. Zhang, Dependence of solutions and eigenvalues of measure differential equations on measures, J. Differential Eqautions, 254 (2013), 2196-2232.  doi: 10.1016/j.jde.2012.12.001. [9] A. B. Mingarelli, Volterra-Stieltjes Integral Equations and Generalized Ordinary Differential Expressions Lecture Notes Math., Vol. 989 Springer-Verlag, New York, 1983. [10] P. Savoye, Equimeasurable rearrangements of functions and fourth order boundary value problems, Rocky Mountain J. Math., 26 (1996), 281-293.  doi: 10.1216/rmjm/1181072116. [11] Š. Schwabik, Generalized Ordinary Differential Equations World Scientific, Singapore, 1992. [12] M. Tvrdý, Linear distributional differential equations of the second order, Math. Bohem., 119 (1994), 415-436. [13] M. Tvrdý, Differential and integral equations in the space of regulated functions, Mem. Differential Equations Math. Phys., 25 (2002), 1-104. [14] Q. Wei, G. Meng and M. Zhang, Extremal values of eigenvalues of Sturm-Liouville operators with potentials in L1 balls, J. Differential Equations, 247 (2009), 364-400.  doi: 10.1016/j.jde.2009.04.008. [15] P. Yan and M. Zhang, Continuity in weak topology and extremal problems of eigenvalues of the p-Laplacian, Trans. Amer. Math. Soc., 363 (2011), 2003-2028.  doi: 10.1090/S0002-9947-2010-05051-2. [16] M. Zhang, Extremal values of smallest eigenvalues of Hill's operators with potentials in L1 balls, J. Differential Equations, 246 (2009), 4188-4220.  doi: 10.1016/j.jde.2009.03.016. [17] M. Zhang, Minimization of the zeroth Neumann eigenvalues with integrable potentials, Ann. Inst. H.Poincaré Anal. Non Linéaire, 29 (2012), 501-523.  doi: 10.1016/j.anihpc.2012.01.007.
Function $\mathbf{L}(r)$ of $r$
 [1] Monika Laskawy. Optimality conditions of the first eigenvalue of a fourth order Steklov problem. Communications on Pure and Applied Analysis, 2017, 16 (5) : 1843-1859. doi: 10.3934/cpaa.2017089 [2] Gang Meng. The optimal upper bound for the first eigenvalue of the fourth order equation. Discrete and Continuous Dynamical Systems, 2017, 37 (12) : 6369-6382. doi: 10.3934/dcds.2017276 [3] Jiantao Jiang, Jing An, Jianwei Zhou. A novel numerical method based on a high order polynomial approximation of the fourth order Steklov equation and its eigenvalue problems. Discrete and Continuous Dynamical Systems - B, 2022  doi: 10.3934/dcdsb.2022066 [4] Craig Cowan, Pierpaolo Esposito, Nassif Ghoussoub. Regularity of extremal solutions in fourth order nonlinear eigenvalue problems on general domains. Discrete and Continuous Dynamical Systems, 2010, 28 (3) : 1033-1050. doi: 10.3934/dcds.2010.28.1033 [5] Haitao Che, Haibin Chen, Yiju Wang. On the M-eigenvalue estimation of fourth-order partially symmetric tensors. Journal of Industrial and Management Optimization, 2020, 16 (1) : 309-324. doi: 10.3934/jimo.2018153 [6] Nguyen Huy Tuan. Existence and limit problem for fractional fourth order subdiffusion equation and Cahn-Hilliard equation. Discrete and Continuous Dynamical Systems - S, 2021, 14 (12) : 4551-4574. doi: 10.3934/dcdss.2021113 [7] Shuai Zhang, Shaopeng Xu. The probabilistic Cauchy problem for the fourth order Schrödinger equation with special derivative nonlinearities. Communications on Pure and Applied Analysis, 2020, 19 (6) : 3367-3385. doi: 10.3934/cpaa.2020149 [8] Yuanyuan Ren, Yongsheng Li, Wei Yan. Sharp well-posedness of the Cauchy problem for the fourth order nonlinear Schrödinger equation. Communications on Pure and Applied Analysis, 2018, 17 (2) : 487-504. doi: 10.3934/cpaa.2018027 [9] Jun-ichi Segata. Initial value problem for the fourth order nonlinear Schrödinger type equation on torus and orbital stability of standing waves. Communications on Pure and Applied Analysis, 2015, 14 (3) : 843-859. doi: 10.3934/cpaa.2015.14.843 [10] Editorial Office. Retraction: The probabilistic Cauchy problem for the fourth order Schrödinger equation with special derivative nonlinearities. Communications on Pure and Applied Analysis, 2020, 19 (7) : 3785-3785. doi: 10.3934/cpaa.2020167 [11] Boling Guo, Jun Wu. Well-posedness of the initial-boundary value problem for the fourth-order nonlinear Schrödinger equation. Discrete and Continuous Dynamical Systems - B, 2022, 27 (7) : 3749-3778. doi: 10.3934/dcdsb.2021205 [12] Zongming Guo, Long Wei. A fourth order elliptic equation with a singular nonlinearity. Communications on Pure and Applied Analysis, 2014, 13 (6) : 2493-2508. doi: 10.3934/cpaa.2014.13.2493 [13] Changchun Liu. A fourth order nonlinear degenerate parabolic equation. Communications on Pure and Applied Analysis, 2008, 7 (3) : 617-630. doi: 10.3934/cpaa.2008.7.617 [14] Zongming Guo, Long Wei. A perturbed fourth order elliptic equation with negative exponent. Discrete and Continuous Dynamical Systems - B, 2018, 23 (10) : 4187-4205. doi: 10.3934/dcdsb.2018132 [15] Xu Liu, Jun Zhou. Initial-boundary value problem for a fourth-order plate equation with Hardy-Hénon potential and polynomial nonlinearity. Electronic Research Archive, 2020, 28 (2) : 599-625. doi: 10.3934/era.2020032 [16] Haitao Che, Haibin Chen, Guanglu Zhou. New M-eigenvalue intervals and application to the strong ellipticity of fourth-order partially symmetric tensors. Journal of Industrial and Management Optimization, 2021, 17 (6) : 3685-3694. doi: 10.3934/jimo.2020139 [17] Yuyan Yao, Gang Wang. Sharp upper bounds on the maximum $M$-eigenvalue of fourth-order partially symmetric nonnegative tensors. Mathematical Foundations of Computing, 2022, 5 (1) : 33-44. doi: 10.3934/mfc.2021018 [18] Tokushi Sato, Tatsuya Watanabe. Singular positive solutions for a fourth order elliptic problem in $R$. Communications on Pure and Applied Analysis, 2011, 10 (1) : 245-268. doi: 10.3934/cpaa.2011.10.245 [19] Baishun Lai, Qing Luo. Regularity of the extremal solution for a fourth-order elliptic problem with singular nonlinearity. Discrete and Continuous Dynamical Systems, 2011, 30 (1) : 227-241. doi: 10.3934/dcds.2011.30.227 [20] John R. Graef, Lingju Kong, Min Wang. Existence of multiple solutions to a discrete fourth order periodic boundary value problem. Conference Publications, 2013, 2013 (special) : 291-299. doi: 10.3934/proc.2013.2013.291

2020 Impact Factor: 1.392