April  2018, 38(4): 2187-2206. doi: 10.3934/dcds.2018090

New periodic orbits in the planar equal-mass three-body problem

School of Mathematics and System Sciences, Beihang University, Beijing 100191, China

* Corresponding author: Duokui Yan

Received  June 2017 Revised  October 2017 Published  January 2018

Fund Project: The authors are supported by NSFC No.11432001 and the Fundamental Research Funds of the Central Universities.

It is known that there exist two sets of nontrivial periodic orbits in the planar equal-mass three-body problem: retrograde orbit and prograde orbit. By introducing topological constraints to a two-point free boundary value problem, we show that there exists a new set of periodic orbits for a small interval of rotation angle $ \mathit{\theta }$.

Citation: Rongchang Liu, Jiangyuan Li, Duokui Yan. New periodic orbits in the planar equal-mass three-body problem. Discrete & Continuous Dynamical Systems, 2018, 38 (4) : 2187-2206. doi: 10.3934/dcds.2018090
References:
[1]

R. Broucke and D. Boggs, Periodic orbits in the planar general three-body problem, Celestial Mech., 11 (1975), 13-38.  doi: 10.1007/BF01228732.  Google Scholar

[2]

K. Chen, Existence and minimizing properties of retrograde orbits to the three-body problem with various choices of masses, Annals of Math., 167 (2008), 325-348.  doi: 10.4007/annals.2008.167.325.  Google Scholar

[3]

K. Chen and Y. Lin, On action-minimizing retrograde and prograde orbits of the three-body problem, Comm. Math. Phys., 291 (2009), 403-441.  doi: 10.1007/s00220-009-0769-5.  Google Scholar

[4]

A. Chenciner and R. Montgomery, A remarkable periodic solution of the three-body problem in the case of equal masses, Annals of Math., 152 (2000), 881-901.  doi: 10.2307/2661357.  Google Scholar

[5]

A. Chenciner, Action minimizing solutions in the Newtonian n-body problem: From homology to symmetry, Proceedings of the International Congress of Mathematicians (Beijing, 2002), Higher Ed. Press, Beijing, (2002), 279-294.  Google Scholar

[6]

W. B. Gordon, A minimizing property of Keplerian orbits, Amer. J. Math., 99 (1977), 961-971.  doi: 10.2307/2373993.  Google Scholar

[7]

M. Hénon, A family of periodic solutions of the planar three-body problem, and their stability, Celestial Mech., 13 (1976), 267-285.  doi: 10.1007/BF01228647.  Google Scholar

[8]

W. Kuang, T. Ouyang, Z. Xie and D. Yan, The Broucke-Hénon orbit and the Schubart orbit in the planar three-body problem with equal masses, preprint, arXiv: 1607.00580. Google Scholar

[9]

C. Marchal, How the method of minimization of action avoids singularities, Celest. Mech. Dyn. Astro., 83 (2002), 325-353.  doi: 10.1023/A:1020128408706.  Google Scholar

[10]

T. Ouyang and Z. Xie, Star pentagon and many stable choreographic solutions of the Newtonian 4-body problem, Physica D, 307 (2015), 61-76.  doi: 10.1016/j.physd.2015.05.015.  Google Scholar

[11]

B. ShiR. LiuD. Yan and T. Ouyang, Multiple periodic orbits connecting a collinear configuration and a double isosceles configuration in the planar equal-mass four-body problem, Adv. Nonlinear Stud., 17 (2017), 819-835.  doi: 10.1515/ans-2017-6028.  Google Scholar

[12]

G. Yu, Simple choreography solutions of the Newtonian N-body problem, Arch. Rational Mech. Anal., 225 (2017), 901-935.  doi: 10.1007/s00205-017-1116-1.  Google Scholar

[13]

G. Yu, Spatial double choreographies of the Newtonian $ 2n$-body problem, arXiv: 1608.07956. Google Scholar

show all references

References:
[1]

R. Broucke and D. Boggs, Periodic orbits in the planar general three-body problem, Celestial Mech., 11 (1975), 13-38.  doi: 10.1007/BF01228732.  Google Scholar

[2]

K. Chen, Existence and minimizing properties of retrograde orbits to the three-body problem with various choices of masses, Annals of Math., 167 (2008), 325-348.  doi: 10.4007/annals.2008.167.325.  Google Scholar

[3]

K. Chen and Y. Lin, On action-minimizing retrograde and prograde orbits of the three-body problem, Comm. Math. Phys., 291 (2009), 403-441.  doi: 10.1007/s00220-009-0769-5.  Google Scholar

[4]

A. Chenciner and R. Montgomery, A remarkable periodic solution of the three-body problem in the case of equal masses, Annals of Math., 152 (2000), 881-901.  doi: 10.2307/2661357.  Google Scholar

[5]

A. Chenciner, Action minimizing solutions in the Newtonian n-body problem: From homology to symmetry, Proceedings of the International Congress of Mathematicians (Beijing, 2002), Higher Ed. Press, Beijing, (2002), 279-294.  Google Scholar

[6]

W. B. Gordon, A minimizing property of Keplerian orbits, Amer. J. Math., 99 (1977), 961-971.  doi: 10.2307/2373993.  Google Scholar

[7]

M. Hénon, A family of periodic solutions of the planar three-body problem, and their stability, Celestial Mech., 13 (1976), 267-285.  doi: 10.1007/BF01228647.  Google Scholar

[8]

W. Kuang, T. Ouyang, Z. Xie and D. Yan, The Broucke-Hénon orbit and the Schubart orbit in the planar three-body problem with equal masses, preprint, arXiv: 1607.00580. Google Scholar

[9]

C. Marchal, How the method of minimization of action avoids singularities, Celest. Mech. Dyn. Astro., 83 (2002), 325-353.  doi: 10.1023/A:1020128408706.  Google Scholar

[10]

T. Ouyang and Z. Xie, Star pentagon and many stable choreographic solutions of the Newtonian 4-body problem, Physica D, 307 (2015), 61-76.  doi: 10.1016/j.physd.2015.05.015.  Google Scholar

[11]

B. ShiR. LiuD. Yan and T. Ouyang, Multiple periodic orbits connecting a collinear configuration and a double isosceles configuration in the planar equal-mass four-body problem, Adv. Nonlinear Stud., 17 (2017), 819-835.  doi: 10.1515/ans-2017-6028.  Google Scholar

[12]

G. Yu, Simple choreography solutions of the Newtonian N-body problem, Arch. Rational Mech. Anal., 225 (2017), 901-935.  doi: 10.1007/s00205-017-1116-1.  Google Scholar

[13]

G. Yu, Spatial double choreographies of the Newtonian $ 2n$-body problem, arXiv: 1608.07956. Google Scholar

Figure 2.  A picture of the periodic orbit extended by the action minimizer $\mathcal{P}_0$ with $\theta = \pi/10$. The three dots represent the starting configuration $Q_S$, and the three crosses represent the ending configuration $Q_E$ of $\mathcal{P}_0$. In the graph, the red curve is the trajectory of body 2, the blue curve is for body 1 and the black curve is for body 3.
Figure 1.  The configurations $Q_S$ and $Q_E$ are shown, where blue dots represent $q_1$, red dots represent $q_2$ and black dots represent $q_3$. In $Q_S$, three masses are on the $x-$axis with an order $q_{2x} \leq q_{1x} \leq q_{3x}$. In $Q_E$, three masses form an isosceles triangle, whose symmetry axis is a counterclockwise $\theta$ rotation of the $x-$axis. $q_1$ is on the symmetry axis and $q_2$ is above the symmetry axis in $Q_E$.
Figure 3.  In each figure, the horizontal axis is $ \theta/\pi$, and the vertical axis is the action value $ \mathcal{A}$. In each subfigure, the black curve is the graph of the test path's action $\mathcal{A}_{test}$; the purple curve is the graph of $\mathcal{A}_{Euler} = g(\theta)$ in (31) and the red curve is the graph of $f_2(\theta)$ in (31), which is the lower bound of $\mathcal{A}_{col}$.
Table 1.  The positions of $\tilde{q}_{i, j} = \tilde{q}_{i}(\frac{j}{10}) \, (i = 1,2, \, j = 0,1, \dots, 10)$ in $\mathcal{P}_{test, \, \theta}$ corresponding to $\theta \in [0.181\pi, \, 0.183 \pi]$.
$\mathbf{\theta_0= 0.182 \pi, \, \, \, \, \, \theta \in [0.181 \pi, \, 0.183 \pi ]}$
$t$ $\tilde{q}_1$ $\tilde{q}_2$
$0$ $(0.1109, \, 0 )$ $( -1.1189,\, 0 )$
$0.1$ $( 0.11378134, \, 0.035120592)$ $ ( -1.1144897, \, 0.089194621)$
$0.2$ $(0.12212758, \, 0.068373015 )$ $( -1.1012708, \,0.17787543 )$
$0.3$ $(0.13510199, \, 0.098115021 )$ $(-1.0792782, \, 0.26552094 )$
$0.4$ $( 0.15147483, \, 0.12309328 )$ $( -1.0485685, \, 0.35159462 ) $
$0.5$ $( 0.16980434, \, 0.14251378 )$ $ ( -1.0092177, \, 0.43553762) $
$0.6$ $( 0.18860029, \, 0.15603011)$ $ (-0.96132044, \, 0.51676178)$
$0.7$ $(0.20644197, \, 0.16368275 )$ $ ( -0.90499096, \, 0.59464214) $
$0.8$ $( 0.22204784, \, 0.16582253 )$ $(-0.84036636, \, 0.66850889) $
$0.9$ $( 0.23430842, \, 0.16304077 )$ $( -0.76761388, \, 0.73763832) $
$1$ $(0.28822237, \, 0 ) R(\theta)$ $ (-0.144111185, \, 1.0455201)R(\theta)$
$\mathbf{\theta_0= 0.182 \pi, \, \, \, \, \, \theta \in [0.181 \pi, \, 0.183 \pi ]}$
$t$ $\tilde{q}_1$ $\tilde{q}_2$
$0$ $(0.1109, \, 0 )$ $( -1.1189,\, 0 )$
$0.1$ $( 0.11378134, \, 0.035120592)$ $ ( -1.1144897, \, 0.089194621)$
$0.2$ $(0.12212758, \, 0.068373015 )$ $( -1.1012708, \,0.17787543 )$
$0.3$ $(0.13510199, \, 0.098115021 )$ $(-1.0792782, \, 0.26552094 )$
$0.4$ $( 0.15147483, \, 0.12309328 )$ $( -1.0485685, \, 0.35159462 ) $
$0.5$ $( 0.16980434, \, 0.14251378 )$ $ ( -1.0092177, \, 0.43553762) $
$0.6$ $( 0.18860029, \, 0.15603011)$ $ (-0.96132044, \, 0.51676178)$
$0.7$ $(0.20644197, \, 0.16368275 )$ $ ( -0.90499096, \, 0.59464214) $
$0.8$ $( 0.22204784, \, 0.16582253 )$ $(-0.84036636, \, 0.66850889) $
$0.9$ $( 0.23430842, \, 0.16304077 )$ $( -0.76761388, \, 0.73763832) $
$1$ $(0.28822237, \, 0 ) R(\theta)$ $ (-0.144111185, \, 1.0455201)R(\theta)$
Table 2.  The positions of $\tilde{q}_{i, j} = \tilde{q}_{i}(\frac{j}{10}) \, (i = 1,2, \, j = 0,1, \dots, 10)$ in $\mathcal{P}_{test, \, \theta}$ corresponding to $\theta \in [0.176\pi, \, 0.181 \pi]$.
$\mathbf{\theta_0= 0.18 \pi, \, \, \, \, \, \theta \in [0.176 \pi, \, 0.181 \pi ]}$
$t$ $\tilde{q}_1$ $\tilde{q}_2$
$0$ $( 0.1198, \, 0 )$ $(-1.1166, \, 0 )$
$0.1$ $( 0.12300003, \, 0.038069081 )$ $ (-1.1122108, \, 0.087838457 )$
$0.2$ $(0.13225041, \, 0.074032720 )$ $( -1.0990555, \, 0.17518597 )$
$0.3$ $(0.14657647, \, 0.10606411 )$ $( -1.0771702, \, 0.26154328 )$
$0.4$ $(0.16456742, \, 0.13280675 )$ $( -1.0466117, \, 0.34639491 ) $
$0.5$ $(0.18460176, \, 0.15344287 )$ $ (-1.0074550, \, 0.42920169 ) $
$0.6$ $( 0.20503978, \, 0.16765957 )$ $ ( -0.95979063, \, 0.50939364 )$
$0.7$ $(0.22435124, \, 0.17556129 )$ $ ( -0.90372458, \, 0.58636242 ) $
$0.8$ $( 0.24118113, \, 0.17757208 )$ $(-0.83938055, \, 0.65945294 ) $
$0.9$ $( 0.25437250, \, 0.17435316 )$ $(-0.76690612, \, 0.72795349 ) $
$1$ $( 0.31146657, \, 0 ) R(\theta)$ $ (-0.155733285, \, 1.0357709)R(\theta)$
$\mathbf{\theta_0= 0.18 \pi, \, \, \, \, \, \theta \in [0.176 \pi, \, 0.181 \pi ]}$
$t$ $\tilde{q}_1$ $\tilde{q}_2$
$0$ $( 0.1198, \, 0 )$ $(-1.1166, \, 0 )$
$0.1$ $( 0.12300003, \, 0.038069081 )$ $ (-1.1122108, \, 0.087838457 )$
$0.2$ $(0.13225041, \, 0.074032720 )$ $( -1.0990555, \, 0.17518597 )$
$0.3$ $(0.14657647, \, 0.10606411 )$ $( -1.0771702, \, 0.26154328 )$
$0.4$ $(0.16456742, \, 0.13280675 )$ $( -1.0466117, \, 0.34639491 ) $
$0.5$ $(0.18460176, \, 0.15344287 )$ $ (-1.0074550, \, 0.42920169 ) $
$0.6$ $( 0.20503978, \, 0.16765957 )$ $ ( -0.95979063, \, 0.50939364 )$
$0.7$ $(0.22435124, \, 0.17556129 )$ $ ( -0.90372458, \, 0.58636242 ) $
$0.8$ $( 0.24118113, \, 0.17757208 )$ $(-0.83938055, \, 0.65945294 ) $
$0.9$ $( 0.25437250, \, 0.17435316 )$ $(-0.76690612, \, 0.72795349 ) $
$1$ $( 0.31146657, \, 0 ) R(\theta)$ $ (-0.155733285, \, 1.0357709)R(\theta)$
Table 3.  The positions of $\tilde{q}_{i, j} = \tilde{q}_{i}(\frac{j}{10}) \, (i = 1,2, \, j = 0,1, \dots, 10)$ in $\mathcal{P}_{test, \, \theta}$ corresponding to $\theta \in [0.165\pi, \, 0.176 \pi]$.
$\mathbf{\theta_0= 0.173 \pi, \, \, \, \, \, \theta \in [0.165 \pi, \, 0.176 \pi ]}$
$t$ $\tilde{q}_1$ $\tilde{q}_2$
$0$ $( 0.1454,\, 0 )$ $( -1.1064,\, 0 )$
$0.1$ $( 0.14967657,\, 0.046886901 )$ $ (-1.1020407,\, 0.083918190 )$
$0.2$ $(0.16194195,\, 0.090810510 )$ $(-1.0889788,\, 0.16740323 )$
$0.3$ $(0.18067059,\, 0.12932570 )$ $( -1.0672593,\, 0.25001086 )$
$0.4$ $(0.20377305,\, 0.16080303 )$ $( -1.0369499,\, 0.33127610 ) $
$0.5$ $( 0.22901187,\, 0.18445175 )$ $ ( -0.99813266,\, 0.41070550 ) $
$0.6$ $(0.25429011,\, 0.20016641 )$ $ ( -0.95089814,\, 0.48777071 )$
$0.7$ $(0.27778726,\, 0.20832504 )$ $ ( -0.89534096,\, 0.56190183 ) $
$0.8$ $(0.29798679,\, 0.20961764 )$ $( -0.83155952,\, 0.63247939 ) $
$0.9$ $(0.31364961,\, 0.20493038 )$ $(-0.75965878,\, 0.69882326 ) $
$1$ $( 0.37739476,\, 0 ) R(\theta)$ $ ( -0.18869738,\, 1.0021646)R(\theta)$
$\mathbf{\theta_0= 0.173 \pi, \, \, \, \, \, \theta \in [0.165 \pi, \, 0.176 \pi ]}$
$t$ $\tilde{q}_1$ $\tilde{q}_2$
$0$ $( 0.1454,\, 0 )$ $( -1.1064,\, 0 )$
$0.1$ $( 0.14967657,\, 0.046886901 )$ $ (-1.1020407,\, 0.083918190 )$
$0.2$ $(0.16194195,\, 0.090810510 )$ $(-1.0889788,\, 0.16740323 )$
$0.3$ $(0.18067059,\, 0.12932570 )$ $( -1.0672593,\, 0.25001086 )$
$0.4$ $(0.20377305,\, 0.16080303 )$ $( -1.0369499,\, 0.33127610 ) $
$0.5$ $( 0.22901187,\, 0.18445175 )$ $ ( -0.99813266,\, 0.41070550 ) $
$0.6$ $(0.25429011,\, 0.20016641 )$ $ ( -0.95089814,\, 0.48777071 )$
$0.7$ $(0.27778726,\, 0.20832504 )$ $ ( -0.89534096,\, 0.56190183 ) $
$0.8$ $(0.29798679,\, 0.20961764 )$ $( -0.83155952,\, 0.63247939 ) $
$0.9$ $(0.31364961,\, 0.20493038 )$ $(-0.75965878,\, 0.69882326 ) $
$1$ $( 0.37739476,\, 0 ) R(\theta)$ $ ( -0.18869738,\, 1.0021646)R(\theta)$
Table 4.  The positions of $\tilde{q}_{i, j} = \tilde{q}_{i}(\frac{j}{10}) \, (i = 1,2, \, j = 0,1, \dots, 10)$ in $ \mathcal{P}_{test, \, \theta}$ corresponding to $\theta \in [0.146\pi, \, 0.165 \pi]$.
$\mathbf{\theta_0= 0.16 \pi, \, \, \, \, \, \theta \in [0.146 \pi, \, 0.165 \pi ]}$
$t$ $\tilde{q}_1$ $\tilde{q}_2$
$0$ $(0.1803, \, 0 )$ $( -1.0860,\, 0 )$
$0.1$ $( 0.18658246,\, 0.059576674 )$ $ (-1.0816238,\, 0.078768710)$
$0.2$ $( 0.20429715,\, 0.11438956 )$ $(-1.0685224,\, 0.15716562)$
$0.3$ $( 0.23056861,\, 0.16092393 )$ $( -1.0467705,\, 0.23480016)$
$0.4$ $( 0.26186968,\, 0.19737903 )$ $( -1.0164725,\, 0.31125003) $
$0.5$ $( 0.29489886,\, 0.22338233 )$ $ ( -0.97774453,\, 0.38605495) $
$0.6$ $(0.32695826,\, 0.23945199 )$ $ ( -0.93070180,\, 0.45871449)$
$0.7$ $(0.35597786,\, 0.24655415 )$ $ ( -0.87545128,\, 0.52868620) $
$0.8$ $(0.38039590,\, 0.24583791 )$ $( -0.81208876,\, 0.59538118) $
$0.9$ $(0.39901814,\, 0.23851003 )$ $( -0.74069823,\, 0.65815496 ) $
$1$ $(0.46894463,\, 0) R(\theta)$ $ ( -0.234472315,\, 0.94630060)R(\theta)$
$\mathbf{\theta_0= 0.16 \pi, \, \, \, \, \, \theta \in [0.146 \pi, \, 0.165 \pi ]}$
$t$ $\tilde{q}_1$ $\tilde{q}_2$
$0$ $(0.1803, \, 0 )$ $( -1.0860,\, 0 )$
$0.1$ $( 0.18658246,\, 0.059576674 )$ $ (-1.0816238,\, 0.078768710)$
$0.2$ $( 0.20429715,\, 0.11438956 )$ $(-1.0685224,\, 0.15716562)$
$0.3$ $( 0.23056861,\, 0.16092393 )$ $( -1.0467705,\, 0.23480016)$
$0.4$ $( 0.26186968,\, 0.19737903 )$ $( -1.0164725,\, 0.31125003) $
$0.5$ $( 0.29489886,\, 0.22338233 )$ $ ( -0.97774453,\, 0.38605495) $
$0.6$ $(0.32695826,\, 0.23945199 )$ $ ( -0.93070180,\, 0.45871449)$
$0.7$ $(0.35597786,\, 0.24655415 )$ $ ( -0.87545128,\, 0.52868620) $
$0.8$ $(0.38039590,\, 0.24583791 )$ $( -0.81208876,\, 0.59538118) $
$0.9$ $(0.39901814,\, 0.23851003 )$ $( -0.74069823,\, 0.65815496 ) $
$1$ $(0.46894463,\, 0) R(\theta)$ $ ( -0.234472315,\, 0.94630060)R(\theta)$
Table 5.  The positions of $\tilde{q}_{i, j} = \tilde{q}_{i}(\frac{j}{10}) \, (i = 1,2, \, j = 0,1, \dots, 10)$ in $ \mathcal{P}_{test, \, \theta}$ corresponding to $\theta \in [0.12\pi, \, 0.146 \pi]$.
$\mathbf{\theta_0= 0.132 \pi, \, \, \, \, \, \theta \in [0.12 \pi, \, 0.146\pi ]}$
$t$ $\tilde{q}_1$ $\tilde{q}_2$
$0$ $(0.2306, \, 0)$ $( -1.0421, \, 0)$
$0.1$ $( 0.24197875, \, 0.079876150 )$ $ (-1.0375636, \, 0.072168012 )$
$0.2$ $( 0.27249601, \, 0.14948693 )$ $( -1.0240177, \, 0.14401235 )$
$0.3$ $( 0.31440456, \, 0.20354167 )$ $( -1.0016223, \, 0.21516044 )$
$0.4$ $(0.36051601, \, 0.24151617 )$ $( -0.97057606, \, 0.28517262 ) $
$0.5$ $(0.40588817, \, 0.26512985 )$ $ ( -0.93107630, \, 0.35354922 ) $
$0.6$ $(0.44748116, \, 0.27663491 )$ $ ( -0.88330444, \, 0.41974435 )$
$0.7$ $(0.48345138, \, 0.27815124 )$ $ ( -0.82742450, \, 0.48317696 ) $
$0.8$ $(0.51262863, \, 0.27151295 )$ $( -0.76358450, \, 0.54323643 ) $
$0.9$ $(0.53419879, \, 0.25829537 )$ $( -0.69191492, \, 0.59928148 ) $
$1$ $(0.59692629, \, 0) R(\theta)$ $ ( -0.298463145, \, 0.84227284 )R(\theta)$
$\mathbf{\theta_0= 0.132 \pi, \, \, \, \, \, \theta \in [0.12 \pi, \, 0.146\pi ]}$
$t$ $\tilde{q}_1$ $\tilde{q}_2$
$0$ $(0.2306, \, 0)$ $( -1.0421, \, 0)$
$0.1$ $( 0.24197875, \, 0.079876150 )$ $ (-1.0375636, \, 0.072168012 )$
$0.2$ $( 0.27249601, \, 0.14948693 )$ $( -1.0240177, \, 0.14401235 )$
$0.3$ $( 0.31440456, \, 0.20354167 )$ $( -1.0016223, \, 0.21516044 )$
$0.4$ $(0.36051601, \, 0.24151617 )$ $( -0.97057606, \, 0.28517262 ) $
$0.5$ $(0.40588817, \, 0.26512985 )$ $ ( -0.93107630, \, 0.35354922 ) $
$0.6$ $(0.44748116, \, 0.27663491 )$ $ ( -0.88330444, \, 0.41974435 )$
$0.7$ $(0.48345138, \, 0.27815124 )$ $ ( -0.82742450, \, 0.48317696 ) $
$0.8$ $(0.51262863, \, 0.27151295 )$ $( -0.76358450, \, 0.54323643 ) $
$0.9$ $(0.53419879, \, 0.25829537 )$ $( -0.69191492, \, 0.59928148 ) $
$1$ $(0.59692629, \, 0) R(\theta)$ $ ( -0.298463145, \, 0.84227284 )R(\theta)$
Table 6.  The positions of $\tilde{q}_{i, j} = \tilde{q}_{i}(\frac{j}{10}) \, (i = 1,2, \, j = 0,1, \dots, 10)$ in $\mathcal{P}_{test, \, \theta}$ corresponding to $\theta \in [0.089\pi, \, 0.12 \pi]$.
$\mathbf{\theta_0= 0.1 \pi, \, \, \, \, \, \theta \in [0.089 \pi, \, 0.12\pi ]}$
$t$ $\tilde{q}_1$ $\tilde{q}_2$
$0$ $(0.2680, \, 0)$ $( -0.9999, \, 0 )$
$0.1$ $(0.28699887, \, 0.097087533 )$ $ ( -0.99513360, \, 0.068868347)$
$0.2$ $(0.33390510, \, 0.17420817 )$ $( -0.98094971, \, 0.13739837 )$
$0.3$ $(0.39193700, \, 0.22664276 )$ $( -0.95760880, \, 0.20514818)$
$0.4$ $(0.45044849, \, 0.25815778 )$ $( -0.92539244, \, 0.27156414 ) $
$0.5$ $(0.50439276, \, 0.27354220 )$ $ (-0.88455797, \, 0.33601715 ) $
$0.6$ $(0.55150942, \, 0.27662332 )$ $ ( -0.83534366, \, 0.39783468 )$
$0.7$ $(0.59074871, \, 0.27023456 )$ $ ( -0.77798406, \, 0.45632275 ) $
$0.8$ $(0.62156413, \, 0.25649856 )$ $( -0.71271941, \, 0.51078103 ) $
$0.9$ $(0.64359767, \, 0.23707560 )$ $( -0.63979436, \, 0.56051180 ) $
$1$ $(0.69032914, \, 0) R(\theta)$ $ ( -0.34516457, \, 0.74809598 )R(\theta)$
$\mathbf{\theta_0= 0.1 \pi, \, \, \, \, \, \theta \in [0.089 \pi, \, 0.12\pi ]}$
$t$ $\tilde{q}_1$ $\tilde{q}_2$
$0$ $(0.2680, \, 0)$ $( -0.9999, \, 0 )$
$0.1$ $(0.28699887, \, 0.097087533 )$ $ ( -0.99513360, \, 0.068868347)$
$0.2$ $(0.33390510, \, 0.17420817 )$ $( -0.98094971, \, 0.13739837 )$
$0.3$ $(0.39193700, \, 0.22664276 )$ $( -0.95760880, \, 0.20514818)$
$0.4$ $(0.45044849, \, 0.25815778 )$ $( -0.92539244, \, 0.27156414 ) $
$0.5$ $(0.50439276, \, 0.27354220 )$ $ (-0.88455797, \, 0.33601715 ) $
$0.6$ $(0.55150942, \, 0.27662332 )$ $ ( -0.83534366, \, 0.39783468 )$
$0.7$ $(0.59074871, \, 0.27023456 )$ $ ( -0.77798406, \, 0.45632275 ) $
$0.8$ $(0.62156413, \, 0.25649856 )$ $( -0.71271941, \, 0.51078103 ) $
$0.9$ $(0.64359767, \, 0.23707560 )$ $( -0.63979436, \, 0.56051180 ) $
$1$ $(0.69032914, \, 0) R(\theta)$ $ ( -0.34516457, \, 0.74809598 )R(\theta)$
Table 7.  The positions of $\tilde{q}_{i, j} = \tilde{q}_{i}(\frac{j}{10}) \, (i = 1,2, \, j = 0,1, \dots, 10)$ in $\mathcal{P}_{test, \, \theta}$ corresponding to $\theta \in [0.084\pi, \, 0.089 \pi]$.
$\mathbf{\theta_0= 0.085 \pi, \, \, \, \, \, \theta \in [0.084 \pi, \, 0.089\pi ]}$
$t$ $\tilde{q}_1$ $\tilde{q}_2$
$0$ $(0.2818, \, 0)$ $( -0.9827, \, 0 )$
$0.1$ $( 0.30528479, \, 0.10386817 )$ $ ( -0.97782312, \, 0.068296014 )$
$0.2$ $( 0.36044290, \, 0.18168802 )$ $( -0.96333464, \, 0.13622832 )$
$0.3$ $(0.42517243, \, 0.23070675 )$ $( -0.93953669, \, 0.20329795 )$
$0.4$ $( 0.48803512, \, 0.25746053 )$ $( -0.90673504, \, 0.26887596 ) $
$0.5$ $(0.54454099, \, 0.26800959 )$ $ (-0.86520333, \, 0.33225532 ) $
$0.6$ $(0.59300170, \, 0.26663595 )$ $ (-0.81520260, \, 0.39268889 )$
$0.7$ $(0.63277000, \, 0.25631044 )$ $ ( -0.75700467, \, 0.44941510 ) $
$0.8$ $(0.66356766, \, 0.23917705 )$ $( -0.69090435, \, 0.50167763 ) $
$0.9$ $(0.68521757, \, 0.21687569 )$ $( -0.61721738, \, 0.54873962 ) $
$1$ $(0.72320338, \, 0) R(\theta)$ $ ( -0.36160169, \, 0.71048767 )R(\theta)$
$\mathbf{\theta_0= 0.085 \pi, \, \, \, \, \, \theta \in [0.084 \pi, \, 0.089\pi ]}$
$t$ $\tilde{q}_1$ $\tilde{q}_2$
$0$ $(0.2818, \, 0)$ $( -0.9827, \, 0 )$
$0.1$ $( 0.30528479, \, 0.10386817 )$ $ ( -0.97782312, \, 0.068296014 )$
$0.2$ $( 0.36044290, \, 0.18168802 )$ $( -0.96333464, \, 0.13622832 )$
$0.3$ $(0.42517243, \, 0.23070675 )$ $( -0.93953669, \, 0.20329795 )$
$0.4$ $( 0.48803512, \, 0.25746053 )$ $( -0.90673504, \, 0.26887596 ) $
$0.5$ $(0.54454099, \, 0.26800959 )$ $ (-0.86520333, \, 0.33225532 ) $
$0.6$ $(0.59300170, \, 0.26663595 )$ $ (-0.81520260, \, 0.39268889 )$
$0.7$ $(0.63277000, \, 0.25631044 )$ $ ( -0.75700467, \, 0.44941510 ) $
$0.8$ $(0.66356766, \, 0.23917705 )$ $( -0.69090435, \, 0.50167763 ) $
$0.9$ $(0.68521757, \, 0.21687569 )$ $( -0.61721738, \, 0.54873962 ) $
$1$ $(0.72320338, \, 0) R(\theta)$ $ ( -0.36160169, \, 0.71048767 )R(\theta)$
[1]

Hildeberto E. Cabral, Zhihong Xia. Subharmonic solutions in the restricted three-body problem. Discrete & Continuous Dynamical Systems, 1995, 1 (4) : 463-474. doi: 10.3934/dcds.1995.1.463

[2]

Yongming Luo, Athanasios Stylianou. On 3d dipolar Bose-Einstein condensates involving quantum fluctuations and three-body interactions. Discrete & Continuous Dynamical Systems - B, 2021, 26 (6) : 3455-3477. doi: 10.3934/dcdsb.2020239

[3]

Chonghu Guan, Xun Li, Rui Zhou, Wenxin Zhou. Free boundary problem for an optimal investment problem with a borrowing constraint. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021049

[4]

Claudia Lederman, Noemi Wolanski. An optimization problem with volume constraint for an inhomogeneous operator with nonstandard growth. Discrete & Continuous Dynamical Systems, 2021, 41 (6) : 2907-2946. doi: 10.3934/dcds.2020391

[5]

Chiun-Chuan Chen, Hung-Yu Chien, Chih-Chiang Huang. A variational approach to three-phase traveling waves for a gradient system. Discrete & Continuous Dynamical Systems, 2021  doi: 10.3934/dcds.2021055

[6]

Armin Lechleiter, Tobias Rienmüller. Factorization method for the inverse Stokes problem. Inverse Problems & Imaging, 2013, 7 (4) : 1271-1293. doi: 10.3934/ipi.2013.7.1271

[7]

Kazuhiro Kurata, Yuki Osada. Variational problems associated with a system of nonlinear Schrödinger equations with three wave interaction. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021100

[8]

Grace Nnennaya Ogwo, Chinedu Izuchukwu, Oluwatosin Temitope Mewomo. A modified extragradient algorithm for a certain class of split pseudo-monotone variational inequality problem. Numerical Algebra, Control & Optimization, 2021  doi: 10.3934/naco.2021011

[9]

Min Li. A three term Polak-Ribière-Polyak conjugate gradient method close to the memoryless BFGS quasi-Newton method. Journal of Industrial & Management Optimization, 2020, 16 (1) : 245-260. doi: 10.3934/jimo.2018149

[10]

Hongsong Feng, Shan Zhao. A multigrid based finite difference method for solving parabolic interface problem. Electronic Research Archive, , () : -. doi: 10.3934/era.2021031

[11]

Skyler Simmons. Stability of Broucke's isosceles orbit. Discrete & Continuous Dynamical Systems, 2021, 41 (8) : 3759-3779. doi: 10.3934/dcds.2021015

[12]

Eric Babson and Dmitry N. Kozlov. Topological obstructions to graph colorings. Electronic Research Announcements, 2003, 9: 61-68.

[13]

Antonio Rieser. A topological approach to spectral clustering. Foundations of Data Science, 2021, 3 (1) : 49-66. doi: 10.3934/fods.2021005

[14]

Amru Hussein, Martin Saal, Marc Wrona. Primitive equations with horizontal viscosity: The initial value and The time-periodic problem for physical boundary conditions. Discrete & Continuous Dynamical Systems, 2021, 41 (7) : 3063-3092. doi: 10.3934/dcds.2020398

[15]

Marion Darbas, Jérémy Heleine, Stephanie Lohrengel. Numerical resolution by the quasi-reversibility method of a data completion problem for Maxwell's equations. Inverse Problems & Imaging, 2020, 14 (6) : 1107-1133. doi: 10.3934/ipi.2020056

[16]

Mohsen Abdolhosseinzadeh, Mir Mohammad Alipour. Design of experiment for tuning parameters of an ant colony optimization method for the constrained shortest Hamiltonian path problem in the grid networks. Numerical Algebra, Control & Optimization, 2021, 11 (2) : 321-332. doi: 10.3934/naco.2020028

[17]

Ziteng Wang, Shu-Cherng Fang, Wenxun Xing. On constraint qualifications: Motivation, design and inter-relations. Journal of Industrial & Management Optimization, 2013, 9 (4) : 983-1001. doi: 10.3934/jimo.2013.9.983

[18]

Sergi Simon. Linearised higher variational equations. Discrete & Continuous Dynamical Systems, 2014, 34 (11) : 4827-4854. doi: 10.3934/dcds.2014.34.4827

[19]

Roberto Civino, Riccardo Longo. Formal security proof for a scheme on a topological network. Advances in Mathematics of Communications, 2021  doi: 10.3934/amc.2021009

[20]

Xiaoni Chi, Zhongping Wan, Zijun Hao. A full-modified-Newton step $ O(n) $ infeasible interior-point method for the special weighted linear complementarity problem. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021082

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (141)
  • HTML views (368)
  • Cited by (0)

Other articles
by authors

[Back to Top]