April  2018, 38(4): 2207-2228. doi: 10.3934/dcds.2018091

Scattering below ground state of focusing fractional nonlinear Schrödinger equation with radial data

1. 

Université Côte d'Azur, LJAD, 06100, France

2. 

Department of Mathematics and Hubei Province Key Laboratory of Mathematical Physics, Central China Normal University, Wuhan 430079, China

3. 

Université Côte d'Azur, LJAD, 06100, France

* Corresponding author: Hua Wang

Received  June 2017 Revised  October 2017 Published  January 2018

Fund Project: The first and last authors are financed by ERC project SCAPDE, the second author is supported by NSF grant 11101172, 11371158 and 11571131, and the third author is supported by NSF grant 11371158 and 11771165.

The aim of this paper is to adapt the strategy in [8] [ See, B. Dodson, J. Murphy, a new proof of scattering below the ground state for the 3D radial focusing cubic NLS, arXiv:1611.04195 ] to prove the scattering of radial solutions below sharp threshold for certain focusing fractional NLS. The main ingredient is to apply the fractional virial identity proved in [3] [ See, T. Boulenger, D. Himmelsbach, E. Lenzmann, Blow up for fractional NLS, J. Func. Anal, 271(2016), 2569-2603 ] to exclude the concentration of mass near the origin.

Citation: Chenmin Sun, Hua Wang, Xiaohua Yao, Jiqiang Zheng. Scattering below ground state of focusing fractional nonlinear Schrödinger equation with radial data. Discrete and Continuous Dynamical Systems, 2018, 38 (4) : 2207-2228. doi: 10.3934/dcds.2018091
References:
[1]

H. Bahouri, J. Y. Chemin and R. Danchin, Fourier Analysis and Nonlinear Partial Differential Equations, Grundlehren der mathematischen Wissenschaften, 343, Springer-Verlag, Berlin, Heidelberg, 2011. doi: 10.1007/978-3-642-16830-7.

[2]

A. V. Balakrishnan, Fractional powers of closed operators and the semigroups generated by them, Pacific. J. Math., 10 (1960), 419-437.  doi: 10.2140/pjm.1960.10.419.

[3]

T. BoulengerD. Himmelsbach and E. Lenzmann, Blow up for fractional NLS, J. Functional Analysis, 271 (2016), 2569-2603.  doi: 10.1016/j.jfa.2016.08.011.

[4]

W. ChenC. Miao and X. Yao, Dispersive estimates with geometry of finite type, Communications in Partial Differential Equations, 37 (2012), 479-510.  doi: 10.1080/03605302.2011.641053.

[5]

Y. Cho and T. Ozawa, Sobolev inequalities with symmetry, Commun. Contemp. Math., 11 (2009), 355-365.  doi: 10.1142/S0219199709003399.

[6]

Y. ChoG. HwangS. Kwon and S. Lee, Well-posedness and ill-posedness for the cubic fractional Schrödinger equations, Discrete and Continuous Dynamical Systems, 35 (2015), 2863-2880.  doi: 10.3934/dcds.2015.35.2863.

[7]

V. D. Dinh, On the Cauchy problem for the nonlinear semi-relativistic equation in Sobolev spaces, preprint, arXiv: 1701.00852.

[8]

B. Dodson and J. Murphy, A new proof of scattering below the ground state for the 3D radial focusing NLS, Proc. Amer. Math. Soc., 145 (2017), 4859-4867, arXiv: 1611.04195. doi: 10.1090/proc/13678.

[9]

R. L. Frank and E. Lenzmann, Uniqueness of non-linear ground states for fractional Laplacian in $ \mathbb{R}$, Acta Math., 210 (2013), 261-318.  doi: 10.1007/s11511-013-0095-9.

[10]

R. L. FrankE. Lenzmann and L. Silvestre, Uniqueness of radial solutions for the fractional Laplacian, Comm. Pure Appl. Math., 69 (2016), 1671-1726.  doi: 10.1002/cpa.21591.

[11]

Z. Guo and Y. Wang, Improved Strichartz estimates for a class of dispersive equations in the radial case and their applications to nonlinear Schrödinger and wave equation, J. Anal. Math., 124 (2014), 1-38.  doi: 10.1007/s11854-014-0025-6.

[12]

Z. Guo, Y. Sire, Y. Wang and L. Zhao, On the energy-critical fractional Schrodinger equation in the radial case, preprint, arXiv: 1310.6816.

[13]

Y. Hong and Y. Sire, On fractional Schrödinger equations in Sobolev spaces, Communications on Pure and Applied Analysis, 14 (2015), 2265-2282.  doi: 10.3934/cpaa.2015.14.2265.

[14]

C. E. KenigG. Ponce and L. Vega, Well-posedness and scattering results for the generalized Korteweg-de Vries equation via the contraction principle, Comm. Pure. App. Math., 46 (1993), 527-620.  doi: 10.1002/cpa.3160460405.

[15]

C. E. Kenig and F. Merle, Global well-posedness, scattering and blow-up for the energy-critical focusing non-linear Schrödinger equation in the radial case, Invent. Math., 166 (2006), 645-675.  doi: 10.1007/s00222-006-0011-4.

[16]

J. KriegerE. Lenzmann and P. Raphaël, Nondispersive solutions to the $ L^2$-critical half-wave equations, Arch. Ration. Mech. Anal., 209 (2013), 61-129.  doi: 10.1007/s00205-013-0620-1.

[17]

N. Laskin, Fractional Schrödinger equation Phys. Rev. E, 66 (2002), 056108, 7 pp. doi: 10.1103/PhysRevE.66.056108.

[18]

T. Ogawa and Y. Tsutsumi, Blow-up of $ H^1$ solution for the nonlinear Schrödinger equation, J. Differ. Eqns., 92 (1991), 317-330.  doi: 10.1016/0022-0396(91)90052-B.

[19]

E. M. Stein, Harmonic Analysis: Real-Variable Theory, Orthogonality, and Oscillatory Integrals, Princeton University Press, Princeton, New Jersey, 2000.

[20]

T. Tao, On the asymptotic behavior of large radial data for a focusing non-linear Schrödinger equation, Dyn. Partial. Differ.Equ., 1 (2004), 1-47.  doi: 10.4310/DPDE.2004.v1.n1.a1.

show all references

References:
[1]

H. Bahouri, J. Y. Chemin and R. Danchin, Fourier Analysis and Nonlinear Partial Differential Equations, Grundlehren der mathematischen Wissenschaften, 343, Springer-Verlag, Berlin, Heidelberg, 2011. doi: 10.1007/978-3-642-16830-7.

[2]

A. V. Balakrishnan, Fractional powers of closed operators and the semigroups generated by them, Pacific. J. Math., 10 (1960), 419-437.  doi: 10.2140/pjm.1960.10.419.

[3]

T. BoulengerD. Himmelsbach and E. Lenzmann, Blow up for fractional NLS, J. Functional Analysis, 271 (2016), 2569-2603.  doi: 10.1016/j.jfa.2016.08.011.

[4]

W. ChenC. Miao and X. Yao, Dispersive estimates with geometry of finite type, Communications in Partial Differential Equations, 37 (2012), 479-510.  doi: 10.1080/03605302.2011.641053.

[5]

Y. Cho and T. Ozawa, Sobolev inequalities with symmetry, Commun. Contemp. Math., 11 (2009), 355-365.  doi: 10.1142/S0219199709003399.

[6]

Y. ChoG. HwangS. Kwon and S. Lee, Well-posedness and ill-posedness for the cubic fractional Schrödinger equations, Discrete and Continuous Dynamical Systems, 35 (2015), 2863-2880.  doi: 10.3934/dcds.2015.35.2863.

[7]

V. D. Dinh, On the Cauchy problem for the nonlinear semi-relativistic equation in Sobolev spaces, preprint, arXiv: 1701.00852.

[8]

B. Dodson and J. Murphy, A new proof of scattering below the ground state for the 3D radial focusing NLS, Proc. Amer. Math. Soc., 145 (2017), 4859-4867, arXiv: 1611.04195. doi: 10.1090/proc/13678.

[9]

R. L. Frank and E. Lenzmann, Uniqueness of non-linear ground states for fractional Laplacian in $ \mathbb{R}$, Acta Math., 210 (2013), 261-318.  doi: 10.1007/s11511-013-0095-9.

[10]

R. L. FrankE. Lenzmann and L. Silvestre, Uniqueness of radial solutions for the fractional Laplacian, Comm. Pure Appl. Math., 69 (2016), 1671-1726.  doi: 10.1002/cpa.21591.

[11]

Z. Guo and Y. Wang, Improved Strichartz estimates for a class of dispersive equations in the radial case and their applications to nonlinear Schrödinger and wave equation, J. Anal. Math., 124 (2014), 1-38.  doi: 10.1007/s11854-014-0025-6.

[12]

Z. Guo, Y. Sire, Y. Wang and L. Zhao, On the energy-critical fractional Schrodinger equation in the radial case, preprint, arXiv: 1310.6816.

[13]

Y. Hong and Y. Sire, On fractional Schrödinger equations in Sobolev spaces, Communications on Pure and Applied Analysis, 14 (2015), 2265-2282.  doi: 10.3934/cpaa.2015.14.2265.

[14]

C. E. KenigG. Ponce and L. Vega, Well-posedness and scattering results for the generalized Korteweg-de Vries equation via the contraction principle, Comm. Pure. App. Math., 46 (1993), 527-620.  doi: 10.1002/cpa.3160460405.

[15]

C. E. Kenig and F. Merle, Global well-posedness, scattering and blow-up for the energy-critical focusing non-linear Schrödinger equation in the radial case, Invent. Math., 166 (2006), 645-675.  doi: 10.1007/s00222-006-0011-4.

[16]

J. KriegerE. Lenzmann and P. Raphaël, Nondispersive solutions to the $ L^2$-critical half-wave equations, Arch. Ration. Mech. Anal., 209 (2013), 61-129.  doi: 10.1007/s00205-013-0620-1.

[17]

N. Laskin, Fractional Schrödinger equation Phys. Rev. E, 66 (2002), 056108, 7 pp. doi: 10.1103/PhysRevE.66.056108.

[18]

T. Ogawa and Y. Tsutsumi, Blow-up of $ H^1$ solution for the nonlinear Schrödinger equation, J. Differ. Eqns., 92 (1991), 317-330.  doi: 10.1016/0022-0396(91)90052-B.

[19]

E. M. Stein, Harmonic Analysis: Real-Variable Theory, Orthogonality, and Oscillatory Integrals, Princeton University Press, Princeton, New Jersey, 2000.

[20]

T. Tao, On the asymptotic behavior of large radial data for a focusing non-linear Schrödinger equation, Dyn. Partial. Differ.Equ., 1 (2004), 1-47.  doi: 10.4310/DPDE.2004.v1.n1.a1.

[1]

Benjamin Dodson. Improved almost Morawetz estimates for the cubic nonlinear Schrödinger equation. Communications on Pure and Applied Analysis, 2011, 10 (1) : 127-140. doi: 10.3934/cpaa.2011.10.127

[2]

Van Duong Dinh, Sahbi Keraani. The Sobolev-Morawetz approach for the energy scattering of nonlinear Schrödinger-type equations with radial data. Discrete and Continuous Dynamical Systems - S, 2021, 14 (8) : 2837-2876. doi: 10.3934/dcdss.2020407

[3]

Younghun Hong. Scattering for a nonlinear Schrödinger equation with a potential. Communications on Pure and Applied Analysis, 2016, 15 (5) : 1571-1601. doi: 10.3934/cpaa.2016003

[4]

Alp Eden, Elİf Kuz. Almost cubic nonlinear Schrödinger equation: Existence, uniqueness and scattering. Communications on Pure and Applied Analysis, 2009, 8 (6) : 1803-1823. doi: 10.3934/cpaa.2009.8.1803

[5]

Zhiyan Ding, Hichem Hajaiej. On a fractional Schrödinger equation in the presence of harmonic potential. Electronic Research Archive, 2021, 29 (5) : 3449-3469. doi: 10.3934/era.2021047

[6]

Claudianor O. Alves, Rodrigo C. M. Nemer, Sergio H. Monari Soares. The use of the Morse theory to estimate the number of nontrivial solutions of a nonlinear Schrödinger equation with a magnetic field. Communications on Pure and Applied Analysis, 2021, 20 (1) : 449-465. doi: 10.3934/cpaa.2020276

[7]

Wulong Liu, Guowei Dai. Multiple solutions for a fractional nonlinear Schrödinger equation with local potential. Communications on Pure and Applied Analysis, 2017, 16 (6) : 2105-2123. doi: 10.3934/cpaa.2017104

[8]

Xudong Shang, Jihui Zhang. Multiplicity and concentration of positive solutions for fractional nonlinear Schrödinger equation. Communications on Pure and Applied Analysis, 2018, 17 (6) : 2239-2259. doi: 10.3934/cpaa.2018107

[9]

Patricio Felmer, César Torres. Radial symmetry of ground states for a regional fractional Nonlinear Schrödinger Equation. Communications on Pure and Applied Analysis, 2014, 13 (6) : 2395-2406. doi: 10.3934/cpaa.2014.13.2395

[10]

Van Duong Dinh, Binhua Feng. On fractional nonlinear Schrödinger equation with combined power-type nonlinearities. Discrete and Continuous Dynamical Systems, 2019, 39 (8) : 4565-4612. doi: 10.3934/dcds.2019188

[11]

David Gómez-Castro, Juan Luis Vázquez. The fractional Schrödinger equation with singular potential and measure data. Discrete and Continuous Dynamical Systems, 2019, 39 (12) : 7113-7139. doi: 10.3934/dcds.2019298

[12]

Hassan Emamirad, Arnaud Rougirel. Feynman path formula for the time fractional Schrödinger equation. Discrete and Continuous Dynamical Systems - S, 2020, 13 (12) : 3391-3400. doi: 10.3934/dcdss.2020246

[13]

Zhengping Wang, Huan-Song Zhou. Radial sign-changing solution for fractional Schrödinger equation. Discrete and Continuous Dynamical Systems, 2016, 36 (1) : 499-508. doi: 10.3934/dcds.2016.36.499

[14]

Amit Goswami, Sushila Rathore, Jagdev Singh, Devendra Kumar. Analytical study of fractional nonlinear Schrödinger equation with harmonic oscillator. Discrete and Continuous Dynamical Systems - S, 2021, 14 (10) : 3589-3610. doi: 10.3934/dcdss.2021021

[15]

Songbai Peng, Aliang Xia. Normalized solutions of supercritical nonlinear fractional Schrödinger equation with potential. Communications on Pure and Applied Analysis, 2021, 20 (11) : 3723-3744. doi: 10.3934/cpaa.2021128

[16]

Qihong Shi, Congming Peng, Qingxuan Wang. Blowup results for the fractional Schrödinger equation without gauge invariance. Discrete and Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021304

[17]

Georgios Fotopoulos, Markus Harju, Valery Serov. Inverse fixed angle scattering and backscattering for a nonlinear Schrödinger equation in 2D. Inverse Problems and Imaging, 2013, 7 (1) : 183-197. doi: 10.3934/ipi.2013.7.183

[18]

Satoshi Masaki. A sharp scattering condition for focusing mass-subcritical nonlinear Schrödinger equation. Communications on Pure and Applied Analysis, 2015, 14 (4) : 1481-1531. doi: 10.3934/cpaa.2015.14.1481

[19]

Yongsheng Jiang, Huan-Song Zhou. A sharp decay estimate for nonlinear Schrödinger equations with vanishing potentials. Communications on Pure and Applied Analysis, 2010, 9 (6) : 1723-1730. doi: 10.3934/cpaa.2010.9.1723

[20]

Abdelwahab Bensouilah, Van Duong Dinh, Mohamed Majdoub. Scattering in the weighted $ L^2 $-space for a 2D nonlinear Schrödinger equation with inhomogeneous exponential nonlinearity. Communications on Pure and Applied Analysis, 2019, 18 (5) : 2735-2755. doi: 10.3934/cpaa.2019122

2020 Impact Factor: 1.392

Metrics

  • PDF downloads (300)
  • HTML views (320)
  • Cited by (4)

Other articles
by authors

[Back to Top]