In the present paper, we are concerned with the Hausdorff dimension of certain sets arising in Engel continued fractions. In particular, the Hausdorff dimension of sets
$\big\{x ∈ [0,1): b_n(x) ≥ \phi (n)~i.m.~n ∈ \mathbb{N}\big\}\ \ \text{and}\ \ \big\{x ∈ [0,1): b_n(x) ≥ \phi(n),\ \forall n ≥ 1\big\}$
are completely determined, where $i.m.$ means infinitely many, $\{b_n(x)\}_{n ≥ 1}$ is the sequence of partial quotients of the Engel continued fraction expansion of $x$ and $\phi$ is a positive function defined on natural numbers.
Citation: |
C.-Y. Cao
, B.-W. Wang
and J. Wu
, The growth speed of digits in infinite iterated function systems, Studia Math., 217 (2013)
, 139-158.
doi: 10.4064/sm217-2-3.![]() ![]() ![]() |
|
T. Cusick
, Hausdorff dimension of sets of continued fractions, Quart. J. Math. Oxford, 41 (1990)
, 277-286.
doi: 10.1093/qmath/41.3.277.![]() ![]() ![]() |
|
K. Falconer, Fractal Geometry: Mathematical Foundations and Applications, John Wiley & Sons, Ltd., Chichester, 1990.
![]() ![]() |
|
A.-H. Fan
, B.-W. Wang
and J. Wu
, Arithmetic and metric properties of Oppenheim continued fraction expansions, J. Number Theory, 127 (2007)
, 64-82.
doi: 10.1016/j.jnt.2006.12.016.![]() ![]() ![]() |
|
L.-L. Fang
, Large and moderate deviations for modified Engel continued fractions, Statist. Probab. Lett., 98 (2015)
, 98-106.
doi: 10.1016/j.spl.2014.12.015.![]() ![]() ![]() |
|
L. -L. Fang and M. Wu, A note on Rényi's "record" problem and Engel's series, to appear in Proceedings of the Edinburgh Mathematical Society.
![]() |
|
L.-L. Fang
, M. Wu
and L. Shang
, Large and moderate deviation principles for Engel continued fraction, J. Theoret. Probab., (2015)
, 1-25.
doi: 10.1007/s10959-016-0715-3.![]() ![]() |
|
D.-J. Feng
, J. Wu
, J.-C. Liang
and S. Tseng
, Appendix to the paper by T. Luczak-a simple proof of the lower bound: "On the fractional dimension of sets of continued fractions", Mathematika, 44 (1997)
, 54-55.
doi: 10.1112/S0025579300011967.![]() ![]() ![]() |
|
J. Galambos, Representations of Real Numbers by Infinite Series, Lecture Notes in Mathematics, Vol. 502. Springer-Verlag, Berlin-New York, 1976.
![]() ![]() |
|
I. Good
, The fractional dimensional theory of continued fractions, Proc. Cambridge Philos. Soc., 37 (1941)
, 199-228.
doi: 10.1017/S030500410002171X.![]() ![]() ![]() |
|
P. Hanus
, R. Mauldin
and M. Urbański
, Thermodynamic formalism and multifractal analysis of conformal infinite iterated function systems, Acta Math. Hungar., 96 (2002)
, 27-98.
doi: 10.1023/A:1015613628175.![]() ![]() ![]() |
|
Y. Hartono
, C. Kraaikamp
and F. Schweiger
, Algebraic and ergodic properties of a new continued fraction algorithm with non-decreasing partial quotients, J. Théor. Nombres Bordeaux, 14 (2002)
, 497-516.
doi: 10.5802/jtnb.371.![]() ![]() ![]() |
|
K. Hirst
, Continued fractions with sequences of partial quotients, Proc. Amer. Math. Soc., 38 (1973)
, 221-227.
doi: 10.1090/S0002-9939-1973-0311581-4.![]() ![]() ![]() |
|
H. Hu
, Y.-L. Yu
and Y.-F. Zhao
, A note on approximation efficiency and partial quotients of Engel continued fractions, Int. J. Number Theory, 13 (2017)
, 2433-2443.
doi: 10.1142/S1793042117501329.![]() ![]() ![]() |
|
V. Jarník
, Zur metrischen Theorie der diopahantischen Approximationen, Proc. Mat. Fyz., 36 (1928)
, 91-106.
![]() |
|
T. Jordan
and M. Rams
, Increasing digit subsystems of infinite iterated function systems, Proc. Amer. Math. Soc., 140 (2012)
, 1267-1279.
doi: 10.1090/S0002-9939-2011-10969-9.![]() ![]() ![]() |
|
A. Khintchine, Continued Fractions, The University of Chicago Press, Chicago-London, 1964.
![]() ![]() |
|
C. Kraaikamp
and J. Wu
, On a new continued fraction expansion with non-decreasing partial quotients, Monatsh. Math., 143 (2004)
, 285-298.
doi: 10.1007/s00605-004-0246-3.![]() ![]() ![]() |
|
L.-M. Liao
and M. Rams
, Subexponentially increasing sums of partial quotients in continued fraction expansions, Math. Proc. Cambridge Philos. Soc., 160 (2016)
, 401-412.
doi: 10.1017/S0305004115000742.![]() ![]() ![]() |
|
T. Luczak
, On the fractional dimension of sets of continued fractions, Mathematika, 44 (1997)
, 50-53.
doi: 10.1112/S0025579300011955.![]() ![]() ![]() |
|
R. Mauldin
and M. Urbański
, Dimensions and measures in infinite iterated function systems, Proc. London Math. Soc. (3), 73 (1996)
, 105-154.
![]() ![]() |
|
L. Rempe-Gillen
and M. Urbański
, Non-autonomous conformal iterated function systems and Moran-set constructions, Trans. Amer. Math. Soc., 368 (2016)
, 1979-2017.
![]() ![]() |
|
F. Schweiger, Ergodic Theory of Fibred Systems and Metric Number Theory, Oxford University Press, New York, 1995.
![]() ![]() |
|
B.-W. Wang
and J. Wu
, A problem of Hirst on continued fractions with sequences of partial quotients, Bull. Lond. Math. Soc., 40 (2008)
, 18-22.
doi: 10.1112/blms/bdm103.![]() ![]() ![]() |
|
B.-W. Wang
and J. Wu
, Hausdorff dimension of certain sets arising in continued fraction expansions, Adv. Math., 218 (2008)
, 1319-1339.
doi: 10.1016/j.aim.2008.03.006.![]() ![]() ![]() |
|
Z.-L. Zhang
and C.-Y. Cao
, On points with positive density of the digit sequence in infinite iterated function systems, J. Aust. Math. Soc., 102 (2017)
, 435-443.
doi: 10.1017/S1446788716000288.![]() ![]() ![]() |
|
T. Zhong
and L. Tang
, The sets of different continued fractions with the same partial quotients, Int. J. Number Theory, 9 (2013)
, 1855-1863.
doi: 10.1142/S1793042113500619.![]() ![]() ![]() |
RCF-map and ECF-map