Cheung, Hubert and Masur [Invent. Math., 183(2011), no.2, pp. 337-383] proved that the Hausdorff dimension of the set of nonergodic directions of billiards in a kind of rectangle with barrier is either 0 or $\frac{1}{2}$. As an application of their argument, we prove that there exist the third-kind two-genus double covers of tori in which the set of minimal and non-ergodic directions have Hausdorff dimension $\frac{1}{2}$.
Citation: |
J. S. Athreya
and J. Chaika
, The Hausdorff dimension of non-uniquely ergodic directions in $H(2)$ is almost everywhere $\frac{1}{2}$, Geom. Topol., 19 (2015)
, 3537-3563.
![]() ![]() |
|
Y. Cheung
, Hausdorff dimension of the set of nonergodic directions. With an appendix by M. Boshernitzan, Ann. of Math., 158 (2003)
, 661-678.
doi: 10.4007/annals.2003.158.661.![]() ![]() ![]() |
|
Y. Cheung
, Y. P. Hubert
and H. Masur
, Dichotomy for the Hausdorff dimension of the set of nonergodic directions, Invent. Math., 183 (2011)
, 337-383.
doi: 10.1007/s00222-010-0279-2.![]() ![]() ![]() |
|
Y. Cheung
and H. Masur
, Minimal non-ergodic directions on genus-2 translation surfaces, Ergodic Theory Dynam. Systems, 26 (2006)
, 341-351.
doi: 10.1017/S0143385705000465.![]() ![]() ![]() |
|
A. Eskin
, H. Masur
and M. Schmoll
, Billiards in rectangles with barriers, Duke Math. J., 118 (2003)
, 427-463.
doi: 10.1215/S0012-7094-03-11832-3.![]() ![]() ![]() |
|
K. Falconer, Fractal Geometry. Mathematical Foundations and Applications, Wiley, Chichester, 1990.
![]() ![]() |
|
S. Kerckhoff
, H. Masur
and J. Smillie
, Ergodicity of billiard flows and qudratic differentials, Ann. of Math., 124 (1986)
, 293-311.
doi: 10.2307/1971280.![]() ![]() ![]() |
|
H. Masur
and J. Smillie
, Hausdorff dimension of sets of nonergodic measured foliations, Ann. of Math., 134 (1991)
, 455-543.
doi: 10.2307/2944356.![]() ![]() ![]() |
|
C.T. McMullen
, Dynamics of SL$_2(\mathbb{R})$ over moduli space in genus two, Ann. of Math., 165 (2007)
, 397-456.
doi: 10.4007/annals.2007.165.397.![]() ![]() ![]() |
|
A. Wright
, From rational billiards to dynamics on moduli spaces, Bull. Amer. Math. Soc. (N.S.), 53 (2016)
, 41-56.
![]() ![]() |
The double cover
Combinatorial realization
New hexagon by gluing pieces of polygons
The parallelogram domain