May  2018, 38(5): 2487-2503. doi: 10.3934/dcds.2018103

Topological stability and spectral decomposition for homeomorphisms on noncompact spaces

Department of Mathematics, Chungnam National University, Daejeon 305-764, Korea

* Corresponding author (yangyinong1201@gmail.com)

Received  August 2017 Published  March 2018

In this paper, we introduce the notions of expansiveness, shadowing property and topological stability for homeomorphisms on noncompact metric spaces which are dynamical properties and equivalent to the classical definitions in case of compact metric spaces. Then we extend the Walters's stability theorem and Smale's spectral decomposition theorem to homeomorphisms on locally compact metric spaces.

Citation: Keonhee Lee, Ngoc-Thach Nguyen, Yinong Yang. Topological stability and spectral decomposition for homeomorphisms on noncompact spaces. Discrete and Continuous Dynamical Systems, 2018, 38 (5) : 2487-2503. doi: 10.3934/dcds.2018103
References:
[1]

N. Aoki, On homeomorphisms with pseudo-orbit tracing property, Tokyo J. Math., 6 (1983), 329-334.  doi: 10.3836/tjm/1270213874.

[2]

B. Carvalho and W. Cordeiro, N-expansive homeomorphisms with the shadowing property, J. Differential Equations, 261 (2016), 3734-3755.  doi: 10.1016/j.jde.2016.06.003.

[3]

N.-P. Chung and K. Lee, Topological stability and pseudo-orbit tracing property of group actions, Proc. Amer. Math. Soc., 146 (2018), 1047-1057. 

[4]

W. CordeiroM. Denker and X. Zhang, On specification and measure expansiveness, Discrete Contin. Dyn. Syst., 37 (2017), 1941-1957. 

[5]

T. DasK. LeeD. Richeson and J. Wiseman, Spectral decomposition for topologically Anosov homemorphisms on noncompact and non-metrizable spaces, Topology Appl., 160 (2013), 149-158.  doi: 10.1016/j.topol.2012.10.010.

[6]

M. Hurley, Chain recurrence, semiflows, and gradients, J. Dynam. Differential Equations, 7 (1995), 437-456.  doi: 10.1007/BF02219371.

[7]

K. Lee and C. A. Morales, Topological stability and pseudo-orbit tracing property for expansive measures, J. Differential Equations, 262 (2017), 3467-3487.  doi: 10.1016/j.jde.2016.04.029.

[8]

P. Oprocha, Chain recurrence in multidimensional time discrete dynamical systems, Discrete Conti. Dyn. Syst., 20 (2008), 1039-1056.  doi: 10.3934/dcds.2008.20.1039.

[9]

S. Smale, Differentiable dynamical systems, Bull. Amer. Math. Soc., 73 (1967), 747-817.  doi: 10.1090/S0002-9904-1967-11798-1.

[10]

P. Walters, On the pseudo-orbit tracing property and its relationship to stability, Lecture Notes in Math., Springer, 668 (1978), 231-244.

show all references

References:
[1]

N. Aoki, On homeomorphisms with pseudo-orbit tracing property, Tokyo J. Math., 6 (1983), 329-334.  doi: 10.3836/tjm/1270213874.

[2]

B. Carvalho and W. Cordeiro, N-expansive homeomorphisms with the shadowing property, J. Differential Equations, 261 (2016), 3734-3755.  doi: 10.1016/j.jde.2016.06.003.

[3]

N.-P. Chung and K. Lee, Topological stability and pseudo-orbit tracing property of group actions, Proc. Amer. Math. Soc., 146 (2018), 1047-1057. 

[4]

W. CordeiroM. Denker and X. Zhang, On specification and measure expansiveness, Discrete Contin. Dyn. Syst., 37 (2017), 1941-1957. 

[5]

T. DasK. LeeD. Richeson and J. Wiseman, Spectral decomposition for topologically Anosov homemorphisms on noncompact and non-metrizable spaces, Topology Appl., 160 (2013), 149-158.  doi: 10.1016/j.topol.2012.10.010.

[6]

M. Hurley, Chain recurrence, semiflows, and gradients, J. Dynam. Differential Equations, 7 (1995), 437-456.  doi: 10.1007/BF02219371.

[7]

K. Lee and C. A. Morales, Topological stability and pseudo-orbit tracing property for expansive measures, J. Differential Equations, 262 (2017), 3467-3487.  doi: 10.1016/j.jde.2016.04.029.

[8]

P. Oprocha, Chain recurrence in multidimensional time discrete dynamical systems, Discrete Conti. Dyn. Syst., 20 (2008), 1039-1056.  doi: 10.3934/dcds.2008.20.1039.

[9]

S. Smale, Differentiable dynamical systems, Bull. Amer. Math. Soc., 73 (1967), 747-817.  doi: 10.1090/S0002-9904-1967-11798-1.

[10]

P. Walters, On the pseudo-orbit tracing property and its relationship to stability, Lecture Notes in Math., Springer, 668 (1978), 231-244.

[1]

Woochul Jung, Ngocthach Nguyen, Yinong Yang. Spectral decomposition for rescaling expansive flows with rescaled shadowing. Discrete and Continuous Dynamical Systems, 2020, 40 (4) : 2267-2283. doi: 10.3934/dcds.2020113

[2]

Noriaki Kawaguchi. Topological stability and shadowing of zero-dimensional dynamical systems. Discrete and Continuous Dynamical Systems, 2019, 39 (5) : 2743-2761. doi: 10.3934/dcds.2019115

[3]

Manseob Lee, Jumi Oh, Xiao Wen. Diffeomorphisms with a generalized Lipschitz shadowing property. Discrete and Continuous Dynamical Systems, 2021, 41 (4) : 1913-1927. doi: 10.3934/dcds.2020346

[4]

Fang Zhang, Yunhua Zhou. On the limit quasi-shadowing property. Discrete and Continuous Dynamical Systems, 2017, 37 (5) : 2861-2879. doi: 10.3934/dcds.2017123

[5]

Jonathan Meddaugh. Shadowing as a structural property of the space of dynamical systems. Discrete and Continuous Dynamical Systems, 2022, 42 (5) : 2439-2451. doi: 10.3934/dcds.2021197

[6]

Antonio Rieser. A topological approach to spectral clustering. Foundations of Data Science, 2021, 3 (1) : 49-66. doi: 10.3934/fods.2021005

[7]

Jihoon Lee, Ngocthach Nguyen. Flows with the weak two-sided limit shadowing property. Discrete and Continuous Dynamical Systems, 2021, 41 (9) : 4375-4395. doi: 10.3934/dcds.2021040

[8]

Davor Dragičević. Admissibility, a general type of Lipschitz shadowing and structural stability. Communications on Pure and Applied Analysis, 2015, 14 (3) : 861-880. doi: 10.3934/cpaa.2015.14.861

[9]

Xijun Hu, Li Wu. Decomposition of spectral flow and Bott-type iteration formula. Electronic Research Archive, 2020, 28 (1) : 127-148. doi: 10.3934/era.2020008

[10]

Cleon S. Barroso. The approximate fixed point property in Hausdorff topological vector spaces and applications. Discrete and Continuous Dynamical Systems, 2009, 25 (2) : 467-479. doi: 10.3934/dcds.2009.25.467

[11]

Rafael O. Ruggiero. Shadowing of geodesics, weak stability of the geodesic flow and global hyperbolic geometry. Discrete and Continuous Dynamical Systems, 2006, 14 (2) : 365-383. doi: 10.3934/dcds.2006.14.365

[12]

Welington Cordeiro, Manfred Denker, Xuan Zhang. On specification and measure expansiveness. Discrete and Continuous Dynamical Systems, 2017, 37 (4) : 1941-1957. doi: 10.3934/dcds.2017082

[13]

Welington Cordeiro, Manfred Denker, Xuan Zhang. Corrigendum to: On specification and measure expansiveness. Discrete and Continuous Dynamical Systems, 2018, 38 (7) : 3705-3706. doi: 10.3934/dcds.2018160

[14]

Magdalena Foryś-Krawiec, Jiří Kupka, Piotr Oprocha, Xueting Tian. On entropy of $ \Phi $-irregular and $ \Phi $-level sets in maps with the shadowing property. Discrete and Continuous Dynamical Systems, 2021, 41 (3) : 1271-1296. doi: 10.3934/dcds.2020317

[15]

Roger Metzger, Carlos Arnoldo Morales Rojas, Phillipe Thieullen. Topological stability in set-valued dynamics. Discrete and Continuous Dynamical Systems - B, 2017, 22 (5) : 1965-1975. doi: 10.3934/dcdsb.2017115

[16]

Alexanger Arbieto, Carlos Arnoldo Morales Rojas. Topological stability from Gromov-Hausdorff viewpoint. Discrete and Continuous Dynamical Systems, 2017, 37 (7) : 3531-3544. doi: 10.3934/dcds.2017151

[17]

Edson Pindza, Francis Youbi, Eben Maré, Matt Davison. Barycentric spectral domain decomposition methods for valuing a class of infinite activity Lévy models. Discrete and Continuous Dynamical Systems - S, 2019, 12 (3) : 625-643. doi: 10.3934/dcdss.2019040

[18]

Shoichi Hasegawa. Stability and separation property of radial solutions to semilinear elliptic equations. Discrete and Continuous Dynamical Systems, 2019, 39 (7) : 4127-4136. doi: 10.3934/dcds.2019166

[19]

Luci H. Fatori, Marcio A. Jorge Silva, Vando Narciso. Quasi-stability property and attractors for a semilinear Timoshenko system. Discrete and Continuous Dynamical Systems, 2016, 36 (11) : 6117-6132. doi: 10.3934/dcds.2016067

[20]

Sergei Yu. Pilyugin. Variational shadowing. Discrete and Continuous Dynamical Systems - B, 2010, 14 (2) : 733-737. doi: 10.3934/dcdsb.2010.14.733

2021 Impact Factor: 1.588

Metrics

  • PDF downloads (554)
  • HTML views (297)
  • Cited by (5)

Other articles
by authors

[Back to Top]