\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

A non-homogeneous boundary value problem of the sixth order Boussinesq equation in a quarter plane

  • *Corresponding author: Bing-Yu Zhang

    *Corresponding author: Bing-Yu Zhang
Abstract Full Text(HTML) Figure(1) Related Papers Cited by
  • The paper is concerned with an initial-boundary-value problem of the sixth order Boussinesq equation posed on a quarter plane with non-homogeneous boundary conditions:

    where $β = ± 1$ . It is shown that the problem is locally well-posed in the space $H^s(\mathbb{R}^+)$ for any 0≤s<$\frac{13}{2}$ with the initial data $ (\varphi, ψ)$ in the space

    $H^s(\mathbb{R}^+)× H^{s-1}(\mathbb{R}^+)$

    and the naturally compatible boundary data

    $\mbox{ $h_1∈ H_{loc}^{\frac{s+1}{3}}(\mathbb{R}^+)$, $h_2∈ H_{loc}^{\frac{s-1}{3}}(\mathbb{R}^+) \text{and}\,\,\, h_3∈ H_{loc}^{\frac{s-3}{3}}(\mathbb{R}^+)$}$

    with optimal regularity.

    Mathematics Subject Classification: Primary: 35Q53, 35Q55; Secondary: 35Q35.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • Figure .  Sketch of the half line case

  •   J. Bergh and J. Lofstrom, Interpolation Spaces: An Introduction, Springer-Verlag Berlin Heidelberg, New York, 1976.
      J. L. Bona  and  M. Chen , A boussinesq system for two-way propagation of nonlinear dispersive waves, Physica D: Nonlinear Phenomena, 116 (1998) , 191-224.  doi: 10.1016/S0167-2789(97)00249-2.
      J. L. Bona , M. Chen  and  J. Saut , Boussinesq equations and other systems for small-amplitude long waves in nonlinear dispersive media. ii. the nonlinear theory, Nonlinearity, 17 (2004) , 925-952.  doi: 10.1088/0951-7715/17/3/010.
      J. L. Bona , M. Chen  and  J. Saut , Boussinesq equations and other systems for small-amplitude long waves in nonlinear dispersive media. i. derivation and linear theory, J. Nonlinear Sci., 12 (2002) , 283-318.  doi: 10.1007/s00332-002-0466-4.
      J. L. Bona  and  R. L. Sachs , Global existence of smooth solutions and stability of solitary waves for a generalized Boussinesq equation, Comm. Math. Phys., 118 (1998) , 15-29.  doi: 10.1007/BF01218475.
      J. L. Bona , S. M. Sun  and  B.-Y. Zhang , A non-homogeneous boundary-value problem for the Korteweg-de Vries equation in a quarter plane, Trans. Amer, Math. Soc., 354 (2002) , 427-490.  doi: 10.1090/S0002-9947-01-02885-9.
      J. L. Bona , S. M. Sun  and  B.-Y. Zhang , A nonhomogeneous boundary-value problem for the Korteweg-de Vries equation posed on a finite domain, Comm. Partial Differential Equations, 28 (2003) , 1391-1436.  doi: 10.1081/PDE-120024373.
      J. L. Bona , S. M. Sun  and  B.-Y. Zhang , A non-homogeneous boundary-value problem for the Korteweg-de Vries equation posed on a finite domain. II, J. Differential Equations, 247 (2009) , 2558-2596.  doi: 10.1016/j.jde.2009.07.010.
      J. L. Bona, S. M. Sun and B. -Y. Zhang, Nonhomo Boundary-value problems for Onedimensional nonlinear Schrodinger equations, J. Math. Pures Appl., 109 (2018), 1–66, arXiv: 1503.00065, [math.AP]. doi: 10.1016/j.matpur.2017.11.001.
      J. Boussinesq , Theorie des ondes et des remous qui se propagent le long d'un canal rectangulaire horizontal equation, J. Math. Pures Appl., 17 (1872) , 55-108. 
      C. Christov , G. Maugin  and  M. Velarde , Well-posed Boussinesq paradigm with purely spatial higher-order derivatives, Phys. Rev. E, 54 (1996) , 3621-3638.  doi: 10.1103/PhysRevE.54.3621.
      J. E. Colliander  and  C. E. Kenig , The generalized Korteweg-de Vries equation on the half line, Comm. Partial Differential Equations, 27 (2002) , 2187-2266.  doi: 10.1081/PDE-120016157.
      J. de Frutos , T. Ortega  and  J. M. Sanz-Serna , Pseudospectral method for the "good" Boussinesq equation, Math. Comp., 57 (1991) , 109-122. 
      A. Esfahani  and  L. G. Farah , Local well-posedness for the sixth-order Boussinesq equation, Journal of Mathematical Analysis and Applications, 385 (2012) , 230-242.  doi: 10.1016/j.jmaa.2011.06.038.
      A. Esfahani , L. G. Farah  and  H. Wang , Global existence and blow-up for the generalized sixth-order Boussinesq equation, Nonlinear Anal., 75 (2012) , 4325-4338.  doi: 10.1016/j.na.2012.03.019.
      A. Esfahani  and  H. Wang , A bilinear estimate with application to the sixth-order Boussinesq equation, Differential Integral Equations, 27 (2014) , 401-414. 
      Y.-F. Fang  and  M. G. Grillakis , Existence and uniqueness for Boussinesq type equations on a circle, Comm.Partial Differential Equations, 21 (1996) , 1253-1277.  doi: 10.1080/03605309608821225.
      L. G. Farah , Local solutions in Sobolev spaces with negative indices for the "good" Boussinesq equation, Comm. Partial Differential Equations, 34 (2009) , 52-73.  doi: 10.1080/03605300802682283.
      L. G. Farah  and  M. Scialom , On the periodic "good " Boussinesq equation, Proc. Amer. Math. Soc., 138 (2010) , 953-964.  doi: 10.1090/S0002-9939-09-10142-9.
      B.-F. Feng , T. Kawahara , T. Mitsui  and  Y.-S. Chan , Solitary-wave propagation and interactions for a sixth-order generalized Boussinesq equation, Int. J. Math. Math. Sci., 2005 (2005) , 1435-1448. 
      J. Holmer , The initial-boundary-value problem for the 1d nonlinear schr{ö}dinger equation on the half-line, Differential and Integral equations, 18 (2005) , 647-668. 
      R. Hunt , Muckenhoupt , W. Benjamin  and  R. Wheeden , Weighted norm inequalities for the conjugate function and Hilbert transform, Trans. Amer. Math. Soc., 176 (1973) , 227-251.  doi: 10.1090/S0002-9947-1973-0312139-8.
      O. Kamenov, Exact periodic solutions of the sixth-order generalized Boussinesq equation, J. Phys. A, 42 (2009), 375501, 11 pp.
      C.E. Kenig , G. Ponce  and  L. Vega , Well-posedness and scattering results for the generalized Korteweg-de Vries equation via the contraction principle, Comm. Pure Appl. Math., 46 (1993) , 527-620.  doi: 10.1002/cpa.3160460405.
      C.E. Kenig , G. Ponce  and  L. Vega , A bilinear estimate with applications to the KdV equation, J. Amer. Math. l Soc., 9 (1996) , 573-603.  doi: 10.1090/S0894-0347-96-00200-7.
      F. Linares , Global existence of small solutions for a generalized Boussinesq equation, J. Differential Equations, 106 (1993) , 257-293.  doi: 10.1006/jdeq.1993.1108.
      J. L. Lions and E. Magenes, Non-homogeneous Boundary Value Problems and Applications, volume 1. Die Grundlehren der mathematischen Wissenschaften, Band 182. Springer-Verlag, New York-Heidelberg, 1972.
      F.-L. Liu  and  D. L. Russell , Solutions of the Boussinesq equation on a periodic domain, J. Math. Anal. Appl., 194 (1995) , 78-102.  doi: 10.1006/jmaa.1995.1287.
      Y. Liu , Instability of solitary waves for generalized Boussinesq equations, J. Dynam. Differential Equations, 5 (1993) , 537-558.  doi: 10.1007/BF01053535.
      Y. Liu , Instability and blow-up of solutions to a generalized Boussinesq equation, SIAM J. Math. Anal., 26 (1995) , 1527-1546.  doi: 10.1137/S0036141093258094.
      Y. Liu , Decay and scattering of small solutions of a generalized Boussinesq equation, J. Funct. Anal., 147 (1997) , 51-68.  doi: 10.1006/jfan.1996.3052.
      Y. Liu , Strong instability of solitary-wave solutions of a generalized Boussinesq equation, J. Differential Equations, 164 (2000) , 223-239.  doi: 10.1006/jdeq.2000.3765.
      G. A. Maugin, Nonlinear Waves in Elastic Crystals, Oxford University Press, Oxford, 1999.
      S. Oh  and  A. Stefanov , Improved local well-posedness for the periodic "good" Boussinesq equation, J. Differential Equations, 254 (2013) , 4047-4065.  doi: 10.1016/j.jde.2013.02.006.
      A.K. Pani  and  H. Saranga , Finite element Galerkin method for the "good" Boussinesq equation, Nonlinear Anal., 29 (1997) , 937-956.  doi: 10.1016/S0362-546X(96)00093-4.
      R.L. Sachs , On the blow-up of certain solutions of the "good" Boussinesq equation, Appl. Anal., 36 (1990) , 145-152.  doi: 10.1080/00036819008839928.
      L. Tartar , Interpolation non linéairé et régularité, J. Funct. Anal., 9 (1972) , 469-489.  doi: 10.1016/0022-1236(72)90022-5.
      M. Tsutsumi  and  T. Matahashi , On the Cauchy problem for the Boussinesq type equation, Math. Japon., 36 (1991) , 371-379. 
      H. Wang  and  A. Esfahani , Well-posedness for the Cauchy problem associated to a periodic Boussinesq equation, Nonlinear Anal., 89 (2013) , 267-275.  doi: 10.1016/j.na.2013.04.011.
      R. Xue , Local and global existence of solutions for the Cauchy problem of a generalized Boussinesq equation, J. Math. Anal. Appl., 316 (2006) , 307-327.  doi: 10.1016/j.jmaa.2005.04.041.
      R. Xue , The initial-boundary value problem for the "good" Boussinesq equation on the bounded domain, J. Math. Anal. Appl., 343 (2008) , 975-995.  doi: 10.1016/j.jmaa.2008.02.017.
      R. Xue , The initial-boundary-value problem for the "good" Boussinesq equation on the half line, Nonlinear Anal., 69 (2008) , 647-682.  doi: 10.1016/j.na.2007.06.010.
      R. Xue , Low regularity solution of the initial-boundary-value problem for the "good" Boussinesq equation on the half line, Acta Mathematica Sinica (English Series), 26 (2010) , 2421-2442.  doi: 10.1007/s10114-010-7321-6.
      Z. Yang , On local existence of solutions of initial boundary value problems for the "bad" Boussinesq-type equation, Nonlinear Anal., 51 (2002) , 1259-1271.  doi: 10.1016/S0362-546X(01)00894-X.
  • 加载中

Figures(1)

SHARE

Article Metrics

HTML views(588) PDF downloads(195) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return