\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Stability of the distribution function for piecewise monotonic maps on the interval

The research was partially supported by the projects 42p11 and 38p10 of AKTION Česká republika – Österreich, and by RVO funding for IČ47813059.

Abstract Full Text(HTML) Related Papers Cited by
  • For piecewise monotonic maps the notion of approximating distribution function is introduced. It is shown that for a mixing basic set it coincides with the usual distribution function. Moreover, it is proved that the approximating distribution function is upper semi-continuous under small perturbations of the map.

    Mathematics Subject Classification: 37E05, 37D45, 37C75.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  •   M. Babilonová , Distributional chaos for triangular maps, Ann. Math. Sil., 13 (1999) , 33-38. 
      F. Balibrea , B. Schweizer , A. Sklar  and  J. Smítal , Generalized specification property and distributional chaos, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 13 (2003) , 1683-1694.  doi: 10.1142/S0218127403007539.
      F. Balibrea , J. Smítal  and  M. Štefánková , The three versions of distributional chaos, Chaos Solitons Fractals, 23 (2005) , 1581-1583. 
      A. Blokh, The 'spectral' decomposition for one-dimensional maps, in Dynamics Reported, Expositions in Dynamical Systems, (eds. : C. K. R. T. Jones, U. Kirchgraber, H. O. Walther), Springer, Berlin, 4 (1995), 1-59.
      F. Hofbauer , Piecewise invertible dynamical systems, Probab. Theory Related Fields, 72 (1986) , 359-386.  doi: 10.1007/BF00334191.
      R. Hric  and  M. Málek , Omega limit sets and distributional chaos on graphs, Topology Appl., 153 (2006) , 2469-2475.  doi: 10.1016/j.topol.2005.09.007.
      P. Raith , Continuity of the Hausdorff dimension for piecewise monotonic maps, Israel J. Math., 80 (1992) , 97-133.  doi: 10.1007/BF02808156.
      P. Raith , Continuity of the Hausdorff dimension for invariant subsets of interval maps, Acta Math. Univ. Comenian., 63 (1994) , 39-53. 
      P. Raith , The behaviour of the nonwandering set of a piecewise monotonic interval map under small perturbations, Math. Bohem., 122 (1997) , 37-55. 
      P. Raith , The dynamics of piecewise monotonic maps under small perturbations, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 24 (1997) , 783-811. 
      B. Schweizer , A. Sklar  and  J. Smítal , Distributional (and other) chaos and its measurement, Real Anal. Exchange, 26 (2000/2001) , 495-524. 
      B. Schweizer  and  J. Smítal , Measures of chaos and a spectral decomposition of dynamical systems on the interval, Trans. Amer. Math. Soc., 344 (1994) , 737-754.  doi: 10.1090/S0002-9947-1994-1227094-X.
  • 加载中
SHARE

Article Metrics

HTML views(487) PDF downloads(258) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return