For piecewise monotonic maps the notion of approximating distribution function is introduced. It is shown that for a mixing basic set it coincides with the usual distribution function. Moreover, it is proved that the approximating distribution function is upper semi-continuous under small perturbations of the map.
Citation: |
M. Babilonová
, Distributional chaos for triangular maps, Ann. Math. Sil., 13 (1999)
, 33-38.
![]() ![]() |
|
F. Balibrea
, B. Schweizer
, A. Sklar
and J. Smítal
, Generalized specification property and distributional chaos, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 13 (2003)
, 1683-1694.
doi: 10.1142/S0218127403007539.![]() ![]() ![]() |
|
F. Balibrea
, J. Smítal
and M. Štefánková
, The three versions of distributional chaos, Chaos Solitons Fractals, 23 (2005)
, 1581-1583.
![]() ![]() |
|
A. Blokh, The 'spectral' decomposition for one-dimensional maps, in Dynamics Reported,
Expositions in Dynamical Systems, (eds. : C. K. R. T. Jones, U. Kirchgraber, H. O. Walther),
Springer, Berlin, 4 (1995), 1-59.
![]() ![]() |
|
F. Hofbauer
, Piecewise invertible dynamical systems, Probab. Theory Related Fields, 72 (1986)
, 359-386.
doi: 10.1007/BF00334191.![]() ![]() ![]() |
|
R. Hric
and M. Málek
, Omega limit sets and distributional chaos on graphs, Topology
Appl., 153 (2006)
, 2469-2475.
doi: 10.1016/j.topol.2005.09.007.![]() ![]() ![]() |
|
P. Raith
, Continuity of the Hausdorff dimension for piecewise monotonic maps, Israel J.
Math., 80 (1992)
, 97-133.
doi: 10.1007/BF02808156.![]() ![]() ![]() |
|
P. Raith
, Continuity of the Hausdorff dimension for invariant subsets of interval maps, Acta
Math. Univ. Comenian., 63 (1994)
, 39-53.
![]() ![]() |
|
P. Raith
, The behaviour of the nonwandering set of a piecewise monotonic interval map under small perturbations, Math. Bohem., 122 (1997)
, 37-55.
![]() ![]() |
|
P. Raith
, The dynamics of piecewise monotonic maps under small perturbations, Ann. Scuola
Norm. Sup. Pisa Cl. Sci., 24 (1997)
, 783-811.
![]() ![]() |
|
B. Schweizer
, A. Sklar
and J. Smítal
, Distributional (and other) chaos and its measurement, Real Anal. Exchange, 26 (2000/2001)
, 495-524.
![]() ![]() |
|
B. Schweizer
and J. Smítal
, Measures of chaos and a spectral decomposition of dynamical systems on the interval, Trans. Amer. Math. Soc., 344 (1994)
, 737-754.
doi: 10.1090/S0002-9947-1994-1227094-X.![]() ![]() ![]() |