-
Previous Article
Constant slope models for finitely generated maps
- DCDS Home
- This Issue
-
Next Article
A non-homogeneous boundary value problem of the sixth order Boussinesq equation in a quarter plane
Stability of the distribution function for piecewise monotonic maps on the interval
1. | Mathematical Institute, Silesian University in Opava, Na Rybníčku 1, 746 01 Opava, Czech Republic |
2. | Fakultät für Mathematik, Universität Wien, Oskar-Morgenstern-Platz 1, 1090 Wien, Austria |
For piecewise monotonic maps the notion of approximating distribution function is introduced. It is shown that for a mixing basic set it coincides with the usual distribution function. Moreover, it is proved that the approximating distribution function is upper semi-continuous under small perturbations of the map.
References:
[1] |
M. Babilonová,
Distributional chaos for triangular maps, Ann. Math. Sil., 13 (1999), 33-38.
|
[2] |
F. Balibrea, B. Schweizer, A. Sklar and J. Smítal,
Generalized specification property and distributional chaos, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 13 (2003), 1683-1694.
doi: 10.1142/S0218127403007539. |
[3] |
F. Balibrea, J. Smítal and M. Štefánková,
The three versions of distributional chaos, Chaos Solitons Fractals, 23 (2005), 1581-1583.
|
[4] |
A. Blokh, The 'spectral' decomposition for one-dimensional maps, in Dynamics Reported,
Expositions in Dynamical Systems, (eds. : C. K. R. T. Jones, U. Kirchgraber, H. O. Walther),
Springer, Berlin, 4 (1995), 1-59. |
[5] |
F. Hofbauer,
Piecewise invertible dynamical systems, Probab. Theory Related Fields, 72 (1986), 359-386.
doi: 10.1007/BF00334191. |
[6] |
R. Hric and M. Málek,
Omega limit sets and distributional chaos on graphs, Topology
Appl., 153 (2006), 2469-2475.
doi: 10.1016/j.topol.2005.09.007. |
[7] |
P. Raith,
Continuity of the Hausdorff dimension for piecewise monotonic maps, Israel J.
Math., 80 (1992), 97-133.
doi: 10.1007/BF02808156. |
[8] |
P. Raith,
Continuity of the Hausdorff dimension for invariant subsets of interval maps, Acta
Math. Univ. Comenian., 63 (1994), 39-53.
|
[9] |
P. Raith,
The behaviour of the nonwandering set of a piecewise monotonic interval map under small perturbations, Math. Bohem., 122 (1997), 37-55.
|
[10] |
P. Raith,
The dynamics of piecewise monotonic maps under small perturbations, Ann. Scuola
Norm. Sup. Pisa Cl. Sci., 24 (1997), 783-811.
|
[11] |
B. Schweizer, A. Sklar and J. Smítal,
Distributional (and other) chaos and its measurement, Real Anal. Exchange, 26 (2000/2001), 495-524.
|
[12] |
B. Schweizer and J. Smítal,
Measures of chaos and a spectral decomposition of dynamical systems on the interval, Trans. Amer. Math. Soc., 344 (1994), 737-754.
doi: 10.1090/S0002-9947-1994-1227094-X. |
show all references
References:
[1] |
M. Babilonová,
Distributional chaos for triangular maps, Ann. Math. Sil., 13 (1999), 33-38.
|
[2] |
F. Balibrea, B. Schweizer, A. Sklar and J. Smítal,
Generalized specification property and distributional chaos, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 13 (2003), 1683-1694.
doi: 10.1142/S0218127403007539. |
[3] |
F. Balibrea, J. Smítal and M. Štefánková,
The three versions of distributional chaos, Chaos Solitons Fractals, 23 (2005), 1581-1583.
|
[4] |
A. Blokh, The 'spectral' decomposition for one-dimensional maps, in Dynamics Reported,
Expositions in Dynamical Systems, (eds. : C. K. R. T. Jones, U. Kirchgraber, H. O. Walther),
Springer, Berlin, 4 (1995), 1-59. |
[5] |
F. Hofbauer,
Piecewise invertible dynamical systems, Probab. Theory Related Fields, 72 (1986), 359-386.
doi: 10.1007/BF00334191. |
[6] |
R. Hric and M. Málek,
Omega limit sets and distributional chaos on graphs, Topology
Appl., 153 (2006), 2469-2475.
doi: 10.1016/j.topol.2005.09.007. |
[7] |
P. Raith,
Continuity of the Hausdorff dimension for piecewise monotonic maps, Israel J.
Math., 80 (1992), 97-133.
doi: 10.1007/BF02808156. |
[8] |
P. Raith,
Continuity of the Hausdorff dimension for invariant subsets of interval maps, Acta
Math. Univ. Comenian., 63 (1994), 39-53.
|
[9] |
P. Raith,
The behaviour of the nonwandering set of a piecewise monotonic interval map under small perturbations, Math. Bohem., 122 (1997), 37-55.
|
[10] |
P. Raith,
The dynamics of piecewise monotonic maps under small perturbations, Ann. Scuola
Norm. Sup. Pisa Cl. Sci., 24 (1997), 783-811.
|
[11] |
B. Schweizer, A. Sklar and J. Smítal,
Distributional (and other) chaos and its measurement, Real Anal. Exchange, 26 (2000/2001), 495-524.
|
[12] |
B. Schweizer and J. Smítal,
Measures of chaos and a spectral decomposition of dynamical systems on the interval, Trans. Amer. Math. Soc., 344 (1994), 737-754.
doi: 10.1090/S0002-9947-1994-1227094-X. |
[1] |
Christian Wolf. A shift map with a discontinuous entropy function. Discrete and Continuous Dynamical Systems, 2020, 40 (1) : 319-329. doi: 10.3934/dcds.2020012 |
[2] |
James W. Cannon, Mark H. Meilstrup, Andreas Zastrow. The period set of a map from the Cantor set to itself. Discrete and Continuous Dynamical Systems, 2013, 33 (7) : 2667-2679. doi: 10.3934/dcds.2013.33.2667 |
[3] |
Frédéric Faure. Prequantum chaos: Resonances of the prequantum cat map. Journal of Modern Dynamics, 2007, 1 (2) : 255-285. doi: 10.3934/jmd.2007.1.255 |
[4] |
C. Bonanno, G. Menconi. Computational information for the logistic map at the chaos threshold. Discrete and Continuous Dynamical Systems - B, 2002, 2 (3) : 415-431. doi: 10.3934/dcdsb.2002.2.415 |
[5] |
Yuanhong Chen, Chao Ma, Jun Wu. Moving recurrent properties for the doubling map on the unit interval. Discrete and Continuous Dynamical Systems, 2016, 36 (6) : 2969-2979. doi: 10.3934/dcds.2016.36.2969 |
[6] |
Wacław Marzantowicz, Justyna Signerska. Firing map of an almost periodic input function. Conference Publications, 2011, 2011 (Special) : 1032-1041. doi: 10.3934/proc.2011.2011.1032 |
[7] |
Hun Ki Baek, Younghae Do. Dangerous Border-Collision bifurcations of a piecewise-smooth map. Communications on Pure and Applied Analysis, 2006, 5 (3) : 493-503. doi: 10.3934/cpaa.2006.5.493 |
[8] |
Zhiying Qin, Jichen Yang, Soumitro Banerjee, Guirong Jiang. Border-collision bifurcations in a generalized piecewise linear-power map. Discrete and Continuous Dynamical Systems - B, 2011, 16 (2) : 547-567. doi: 10.3934/dcdsb.2011.16.547 |
[9] |
Sébastien Gouëzel. An interval map with a spectral gap on Lipschitz functions, but not on bounded variation functions. Discrete and Continuous Dynamical Systems, 2009, 24 (4) : 1205-1208. doi: 10.3934/dcds.2009.24.1205 |
[10] |
David Burguet. Examples of $\mathcal{C}^r$ interval map with large symbolic extension entropy. Discrete and Continuous Dynamical Systems, 2010, 26 (3) : 873-899. doi: 10.3934/dcds.2010.26.873 |
[11] |
Denis Volk. Almost every interval translation map of three intervals is finite type. Discrete and Continuous Dynamical Systems, 2014, 34 (5) : 2307-2314. doi: 10.3934/dcds.2014.34.2307 |
[12] |
Piotr Oprocha. Specification properties and dense distributional chaos. Discrete and Continuous Dynamical Systems, 2007, 17 (4) : 821-833. doi: 10.3934/dcds.2007.17.821 |
[13] |
Piotr Oprocha, Pawel Wilczynski. Distributional chaos via isolating segments. Discrete and Continuous Dynamical Systems - B, 2007, 8 (2) : 347-356. doi: 10.3934/dcdsb.2007.8.347 |
[14] |
Lidong Wang, Xiang Wang, Fengchun Lei, Heng Liu. Mixing invariant extremal distributional chaos. Discrete and Continuous Dynamical Systems, 2016, 36 (11) : 6533-6538. doi: 10.3934/dcds.2016082 |
[15] |
Johan Matheus Tuwankotta, Eric Harjanto. Strange attractors in a predator–prey system with non-monotonic response function and periodic perturbation. Journal of Computational Dynamics, 2019, 6 (2) : 469-483. doi: 10.3934/jcd.2019024 |
[16] |
C. R. Chen, S. J. Li. Semicontinuity of the solution set map to a set-valued weak vector variational inequality. Journal of Industrial and Management Optimization, 2007, 3 (3) : 519-528. doi: 10.3934/jimo.2007.3.519 |
[17] |
Angela A. Albanese, Xavier Barrachina, Elisabetta M. Mangino, Alfredo Peris. Distributional chaos for strongly continuous semigroups of operators. Communications on Pure and Applied Analysis, 2013, 12 (5) : 2069-2082. doi: 10.3934/cpaa.2013.12.2069 |
[18] |
Steven M. Pederson. Non-turning Poincaré map and homoclinic tangencies in interval maps with non-constant topological entropy. Conference Publications, 2001, 2001 (Special) : 295-302. doi: 10.3934/proc.2001.2001.295 |
[19] |
Yu-Hao Liang, Wan-Rou Wu, Jonq Juang. Fastest synchronized network and synchrony on the Julia set of complex-valued coupled map lattices. Discrete and Continuous Dynamical Systems - B, 2016, 21 (1) : 173-184. doi: 10.3934/dcdsb.2016.21.173 |
[20] |
Daniel Fusca. The Madelung transform as a momentum map. Journal of Geometric Mechanics, 2017, 9 (2) : 157-165. doi: 10.3934/jgm.2017006 |
2021 Impact Factor: 1.588
Tools
Metrics
Other articles
by authors
[Back to Top]