We study countably monotone and Markov interval maps. We establish sufficient conditions for uniqueness of a conjugate map of constant slope. We explain how global window perturbation can be used to generate a large class of maps satisfying these conditions.
Citation: |
Table 1. Some countably monotone maps from the literature -cf. Section 7.2
Ll. Alsedà
and M. Misiurewicz
, Semiconjugacy to a map of a constant slope, Discrete Contin.
Dyn. Syst. Ser. B, 20 (2015)
, 3403-3413.
doi: 10.3934/dcdsb.2015.20.3403.![]() ![]() ![]() |
|
J. Bobok
, Semiconjugacy to a map of a constant slope, Studia Math., 208 (2012)
, 213-228.
doi: 10.4064/sm208-3-2.![]() ![]() ![]() |
|
J. Bobok and H. Bruin, Constant slope maps and the Vere-Jones classification,
Entropy, 18 (2016), Paper No. 234, 27 pp.
![]() ![]() |
|
J. Bobok
and M. Soukenka
, On piecewise affine interval maps with countably many laps, Discrete Cont. Dyn. Syst., 31 (2011)
, 753-762.
doi: 10.3934/dcds.2011.31.753.![]() ![]() ![]() |
|
W. Feller,
An Introduction to Probability Theory and Its Applications. 3rd Ed. Vol. 1. John Wiley & Sons, Inc., New York, 1950.
![]() ![]() |
|
T. E. Harris
, Transient Markov chains with stationary measures, Proc. Amer. Math. Soc., 8 (1957)
, 937-942.
doi: 10.1090/S0002-9939-1957-0091564-3.![]() ![]() ![]() |
|
A. Katok and B. Hasselblatt,
Introduction to the Modern Theory of Dynamical Systems, Cambridge University Press, Cambridge, UK, 1995.
![]() ![]() |
|
B. Kitchens,
Symbolic Dynamics. One-Sided, Two-Sided, and Countable State Markov Shifts, Universitext. Springer-Verlag, Berlin, 1998.
![]() ![]() |
|
M. Misiurewicz
and S. Roth
, No semiconjugacy to a map of constant slope, Ergodic Theory
Dynam. Systems, 36 (2016)
, 875-889.
doi: 10.1017/etds.2014.81.![]() ![]() ![]() |
|
W. Parry
, Symbolic dynamics and transformations of the unit interval, Trans. Amer. Math.
Soc., 122 (1966)
, 368-378.
doi: 10.1090/S0002-9947-1966-0197683-5.![]() ![]() ![]() |
|
S. Ruette,
Chaos on the Interval, University Lecture Series, 67. American Mathematical Society, Providence, RI, 2017.
![]() ![]() |
|
D. Vere-Jones
, Ergodic properties of nonnegative matrices-I, Pacific J. Math., 22 (1967)
, 361-386.
doi: 10.2140/pjm.1967.22.361.![]() ![]() ![]() |
The production of a finitely generated map