-
Previous Article
Traveling waves for a microscopic model of traffic flow
- DCDS Home
- This Issue
-
Next Article
Constant slope models for finitely generated maps
Global existence in the critical space for the Thirring and Gross-Neveu models coupled with the electromagnetic field
Department of Mathematics, University of Bergen, PO Box 7803, 5020 Bergen, Norway |
We prove global well-posedness for the coupled Maxwell-Dirac-Thirring-Gross-Neveu equations in one space dimension, with data for the Dirac spinor in the critical space $L^2(\mathbb{R})$. In particular, we recover earlier results of Candy and Huh for the Thirring and Gross-Neveu models, respectively, without the coupling to the electromagnetic field, but the function spaces we introduce allow for a greatly simplified proof. We also apply our method to prove local well-posedness in $L^2(\mathbb{R})$ for a quadratic Dirac equation, improving an earlier result of Tesfahun and the author.
References:
[1] |
A. Bachelot,
Global Cauchy problem for semilinear hyperbolic systems with nonlocal interactions. Applications to Dirac equations, J. Math. Pures Appl.(9), 86 (2006), 201-236.
doi: 10.1016/j.matpur.2006.01.006. |
[2] |
I. Bejenaru and S. Herr,
The cubic Dirac equation: Small initial data in $H^1(\Bbb{R}^3)$, Comm. Math. Phys., 335 (2015), 43-82.
doi: 10.1007/s00220-014-2164-0. |
[3] |
N. Bournaveas,
A new proof of global existence for the Dirac Klein-Gordon equations in one space dimension, J. Funct. Anal., 173 (2000), 203-213.
doi: 10.1006/jfan.1999.3559. |
[4] |
N. Bournaveas,
Local well-posedness for a nonlinear Dirac equation in spaces of almost critical dimension, Discrete Contin. Dyn. Syst., 20 (2008), 605-616.
|
[5] |
N. Bournaveas and T. Candy,
Global well-posedness for the massless cubic Dirac equation, Int. Math. Res. Not. IMRN, (2016), 6735-6828.
|
[6] |
N. Boussaïd and A. Comech,
On spectral stability of the nonlinear Dirac equation, J. Funct. Anal., 271 (2016), 1462-1524.
doi: 10.1016/j.jfa.2016.04.013. |
[7] |
T. Candy and H. Lindblad, Long Range Scattering for the cubic Dirac Equation on $\mathbf{R}^{1+1}$, arXiv e-prints 1606.08397 (2016). |
[8] |
T. Candy,
Global existence for an $L^2$ critical nonlinear Dirac equation in one dimension, Adv. Differential Equations, 16 (2011), 643-666.
|
[9] |
_______, Bilinear estimates and applications to global well-posedness for the Dirac-KleinGordon equation on $\Bbb R^{1+1}$, J. Hyperbolic Differ. Equ., 10 (2013), 1-35.
doi: 10.1142/S021989161350001X. |
[10] |
J. M. Chadam,
Global solutions of the Cauchy problem for the (classical) coupled Maxwell-Dirac equations in one space dimension, J. Functional Analysis, 13 (1973), 173-184.
doi: 10.1016/0022-1236(73)90043-8. |
[11] |
A. Contreras, D. E. Pelinovsky and Y. Shimabukuro,
$L^2$ orbital stability of Dirac solitons in the massive Thirring model, Comm. Partial Differential Equations, 41 (2016), 227-255.
doi: 10.1080/03605302.2015.1123272. |
[12] |
P. D'Ancona, D. Foschi and S. Selberg,
Null structure and almost optimal local regularity for the Dirac-Klein-Gordon system, J. Eur. Math. Soc. (JEMS), 9 (2007), 877-899.
|
[13] |
_______, Null structure and almost optimal local well-posedness of the Maxwell-Dirac system, Amer. J. Math., 132 (2010), 771-839.
doi: 10.1353/ajm.0.0118. |
[14] |
P. D'Ancona and S. Selberg,
Global well-posedness of the Maxwell-Dirac system in two space dimensions, J. Funct. Anal., 260 (2011), 2300-2365.
doi: 10.1016/j.jfa.2010.12.010. |
[15] |
V. Delgado,
Global solutions of the Cauchy problem for the (classical) coupled Maxwell-Dirac and other nonlinear Dirac equations in one space dimension, Proc. Amer. Math. Soc., 69 (1978), 289-296.
doi: 10.1090/S0002-9939-1978-0463658-5. |
[16] |
J.-P. Dias and M. Figueira,
Time decay for the solutions of a nonlinear Dirac equation in one space dimension, Ricerche Mat., 35 (1986), 309-316.
|
[17] |
A. Grünrock and H. Pecher,
Global solutions for the Dirac-Klein-Gordon system in two space dimensions, Comm. Partial Differential Equations, 35 (2010), 89-112.
|
[18] |
H. Huh, Global charge solutions of Maxwell-Dirac equations in $\Bbb R^{1+1}$, J. Phys. A, 43 (2010), 445206, 7pp.
doi: 10.1088/1751-8113/43/44/445206. |
[19] |
_______, Global strong solution to the Thirring model in critical space, J. Math. Anal. Appl., 381 (2011), 513-520.
doi: 10.1016/j.jmaa.2011.02.042. |
[20] |
_______, Global solutions to Gross-Neveu equation, Lett. Math. Phys., 103 (2013), 927-931.
doi: 10.1007/s11005-013-0622-9. |
[21] |
H. Huh and B. Moon,
Low regularity well-posedness for Gross-Neveu equations, Commun. Pure Appl. Anal., 14 (2015), 1903-1913.
doi: 10.3934/cpaa.2015.14.1903. |
[22] |
M. Ikeda, Final state problem for the Dirac-Klein-Gordon equations in two space dimensions, Abstr. Appl. Anal., (2013), Art. ID 273959, 11pp. |
[23] |
S. Machihara,
One dimensional Dirac equation with quadratic nonlinearities, Discrete Contin. Dyn. Syst., 13 (2005), 277-290.
doi: 10.3934/dcds.2005.13.277. |
[24] |
_______, Dirac equation with certain quadratic nonlinearities in one space dimension, Commun. Contemp. Math., 9 (2007), 421-435.
doi: 10.1142/S0219199707002484. |
[25] |
S. Machihara, K. Nakanishi and K. Tsugawa,
Well-posedness for nonlinear Dirac equations in one dimension, Kyoto J. Math., 50 (2010), 403-451.
doi: 10.1215/0023608X-2009-018. |
[26] |
S. Machihara and M. Okamoto,
Remarks on ill-posedness for the Dirac-Klein-Gordon system, Dyn. Partial Differ. Equ., 13 (2016), 179-190.
doi: 10.4310/DPDE.2016.v13.n3.a1. |
[27] |
I. P. Naumkin,
Cubic nonlinear Dirac equation in a quarter plane, J. Math. Anal. Appl., 434 (2016), 1633-1664.
doi: 10.1016/j.jmaa.2015.09.049. |
[28] |
_______, Initial-boundary value problem for the one dimensional Thirring model, J. Differential Equations, 261 (2016), 4486-4523.
doi: 10.1016/j.jde.2016.07.003. |
[29] |
M. Okamoto,
Well-posedness and ill-posedness of the Cauchy problem for the Maxwell-Dirac system in $1+1$ space time dimensions, Adv. Differential Equations, 18 (2013), 179-199.
|
[30] |
H. Pecher,
Local well-posedness for the nonlinear Dirac equation in two space dimensions, Commun. Pure Appl. Anal., 13 (2014), 673-685.
|
[31] |
S. Selberg and A. Tesfahun,
Low regularity well-posedness for some nonlinear Dirac equations in one space dimension, Differential Integral Equations, 23 (2010), 265-278.
|
[32] |
A. Tesfahun,
Global well-posedness of the 1D Dirac-Klein-Gordon system in Sobolev spaces of negative index, J. Hyperbolic Differ. Equ., 6 (2009), 631-661.
doi: 10.1142/S0219891609001952. |
[33] |
X. Wang,
On global existence of 3D charge critical Dirac-Klein-Gordon system, Int. Math. Res. Not. IMRN, (2015), 10801-10846.
|
[34] |
A. You and Y. Zhang,
Global solution to Maxwell-Dirac equations in $1+1$ dimensions, Nonlinear Anal., 98 (2014), 226-236.
doi: 10.1016/j.na.2013.12.014. |
[35] |
Y. Zhang and Q. Zhao,
Global solution to nonlinear Dirac equation for Gross-Neveu model in $1+1$ dimensions, Nonlinear Anal., 118 (2015), 82-96.
doi: 10.1016/j.na.2015.02.007. |
show all references
References:
[1] |
A. Bachelot,
Global Cauchy problem for semilinear hyperbolic systems with nonlocal interactions. Applications to Dirac equations, J. Math. Pures Appl.(9), 86 (2006), 201-236.
doi: 10.1016/j.matpur.2006.01.006. |
[2] |
I. Bejenaru and S. Herr,
The cubic Dirac equation: Small initial data in $H^1(\Bbb{R}^3)$, Comm. Math. Phys., 335 (2015), 43-82.
doi: 10.1007/s00220-014-2164-0. |
[3] |
N. Bournaveas,
A new proof of global existence for the Dirac Klein-Gordon equations in one space dimension, J. Funct. Anal., 173 (2000), 203-213.
doi: 10.1006/jfan.1999.3559. |
[4] |
N. Bournaveas,
Local well-posedness for a nonlinear Dirac equation in spaces of almost critical dimension, Discrete Contin. Dyn. Syst., 20 (2008), 605-616.
|
[5] |
N. Bournaveas and T. Candy,
Global well-posedness for the massless cubic Dirac equation, Int. Math. Res. Not. IMRN, (2016), 6735-6828.
|
[6] |
N. Boussaïd and A. Comech,
On spectral stability of the nonlinear Dirac equation, J. Funct. Anal., 271 (2016), 1462-1524.
doi: 10.1016/j.jfa.2016.04.013. |
[7] |
T. Candy and H. Lindblad, Long Range Scattering for the cubic Dirac Equation on $\mathbf{R}^{1+1}$, arXiv e-prints 1606.08397 (2016). |
[8] |
T. Candy,
Global existence for an $L^2$ critical nonlinear Dirac equation in one dimension, Adv. Differential Equations, 16 (2011), 643-666.
|
[9] |
_______, Bilinear estimates and applications to global well-posedness for the Dirac-KleinGordon equation on $\Bbb R^{1+1}$, J. Hyperbolic Differ. Equ., 10 (2013), 1-35.
doi: 10.1142/S021989161350001X. |
[10] |
J. M. Chadam,
Global solutions of the Cauchy problem for the (classical) coupled Maxwell-Dirac equations in one space dimension, J. Functional Analysis, 13 (1973), 173-184.
doi: 10.1016/0022-1236(73)90043-8. |
[11] |
A. Contreras, D. E. Pelinovsky and Y. Shimabukuro,
$L^2$ orbital stability of Dirac solitons in the massive Thirring model, Comm. Partial Differential Equations, 41 (2016), 227-255.
doi: 10.1080/03605302.2015.1123272. |
[12] |
P. D'Ancona, D. Foschi and S. Selberg,
Null structure and almost optimal local regularity for the Dirac-Klein-Gordon system, J. Eur. Math. Soc. (JEMS), 9 (2007), 877-899.
|
[13] |
_______, Null structure and almost optimal local well-posedness of the Maxwell-Dirac system, Amer. J. Math., 132 (2010), 771-839.
doi: 10.1353/ajm.0.0118. |
[14] |
P. D'Ancona and S. Selberg,
Global well-posedness of the Maxwell-Dirac system in two space dimensions, J. Funct. Anal., 260 (2011), 2300-2365.
doi: 10.1016/j.jfa.2010.12.010. |
[15] |
V. Delgado,
Global solutions of the Cauchy problem for the (classical) coupled Maxwell-Dirac and other nonlinear Dirac equations in one space dimension, Proc. Amer. Math. Soc., 69 (1978), 289-296.
doi: 10.1090/S0002-9939-1978-0463658-5. |
[16] |
J.-P. Dias and M. Figueira,
Time decay for the solutions of a nonlinear Dirac equation in one space dimension, Ricerche Mat., 35 (1986), 309-316.
|
[17] |
A. Grünrock and H. Pecher,
Global solutions for the Dirac-Klein-Gordon system in two space dimensions, Comm. Partial Differential Equations, 35 (2010), 89-112.
|
[18] |
H. Huh, Global charge solutions of Maxwell-Dirac equations in $\Bbb R^{1+1}$, J. Phys. A, 43 (2010), 445206, 7pp.
doi: 10.1088/1751-8113/43/44/445206. |
[19] |
_______, Global strong solution to the Thirring model in critical space, J. Math. Anal. Appl., 381 (2011), 513-520.
doi: 10.1016/j.jmaa.2011.02.042. |
[20] |
_______, Global solutions to Gross-Neveu equation, Lett. Math. Phys., 103 (2013), 927-931.
doi: 10.1007/s11005-013-0622-9. |
[21] |
H. Huh and B. Moon,
Low regularity well-posedness for Gross-Neveu equations, Commun. Pure Appl. Anal., 14 (2015), 1903-1913.
doi: 10.3934/cpaa.2015.14.1903. |
[22] |
M. Ikeda, Final state problem for the Dirac-Klein-Gordon equations in two space dimensions, Abstr. Appl. Anal., (2013), Art. ID 273959, 11pp. |
[23] |
S. Machihara,
One dimensional Dirac equation with quadratic nonlinearities, Discrete Contin. Dyn. Syst., 13 (2005), 277-290.
doi: 10.3934/dcds.2005.13.277. |
[24] |
_______, Dirac equation with certain quadratic nonlinearities in one space dimension, Commun. Contemp. Math., 9 (2007), 421-435.
doi: 10.1142/S0219199707002484. |
[25] |
S. Machihara, K. Nakanishi and K. Tsugawa,
Well-posedness for nonlinear Dirac equations in one dimension, Kyoto J. Math., 50 (2010), 403-451.
doi: 10.1215/0023608X-2009-018. |
[26] |
S. Machihara and M. Okamoto,
Remarks on ill-posedness for the Dirac-Klein-Gordon system, Dyn. Partial Differ. Equ., 13 (2016), 179-190.
doi: 10.4310/DPDE.2016.v13.n3.a1. |
[27] |
I. P. Naumkin,
Cubic nonlinear Dirac equation in a quarter plane, J. Math. Anal. Appl., 434 (2016), 1633-1664.
doi: 10.1016/j.jmaa.2015.09.049. |
[28] |
_______, Initial-boundary value problem for the one dimensional Thirring model, J. Differential Equations, 261 (2016), 4486-4523.
doi: 10.1016/j.jde.2016.07.003. |
[29] |
M. Okamoto,
Well-posedness and ill-posedness of the Cauchy problem for the Maxwell-Dirac system in $1+1$ space time dimensions, Adv. Differential Equations, 18 (2013), 179-199.
|
[30] |
H. Pecher,
Local well-posedness for the nonlinear Dirac equation in two space dimensions, Commun. Pure Appl. Anal., 13 (2014), 673-685.
|
[31] |
S. Selberg and A. Tesfahun,
Low regularity well-posedness for some nonlinear Dirac equations in one space dimension, Differential Integral Equations, 23 (2010), 265-278.
|
[32] |
A. Tesfahun,
Global well-posedness of the 1D Dirac-Klein-Gordon system in Sobolev spaces of negative index, J. Hyperbolic Differ. Equ., 6 (2009), 631-661.
doi: 10.1142/S0219891609001952. |
[33] |
X. Wang,
On global existence of 3D charge critical Dirac-Klein-Gordon system, Int. Math. Res. Not. IMRN, (2015), 10801-10846.
|
[34] |
A. You and Y. Zhang,
Global solution to Maxwell-Dirac equations in $1+1$ dimensions, Nonlinear Anal., 98 (2014), 226-236.
doi: 10.1016/j.na.2013.12.014. |
[35] |
Y. Zhang and Q. Zhao,
Global solution to nonlinear Dirac equation for Gross-Neveu model in $1+1$ dimensions, Nonlinear Anal., 118 (2015), 82-96.
doi: 10.1016/j.na.2015.02.007. |
[1] |
Hyungjin Huh, Bora Moon. Low regularity well-posedness for Gross-Neveu equations. Communications on Pure and Applied Analysis, 2015, 14 (5) : 1903-1913. doi: 10.3934/cpaa.2015.14.1903 |
[2] |
Hartmut Pecher. Local well-posedness for the Maxwell-Dirac system in temporal gauge. Discrete and Continuous Dynamical Systems, 2022, 42 (6) : 3065-3076. doi: 10.3934/dcds.2022008 |
[3] |
Gaocheng Yue, Chengkui Zhong. On the global well-posedness to the 3-D Navier-Stokes-Maxwell system. Discrete and Continuous Dynamical Systems, 2016, 36 (10) : 5817-5835. doi: 10.3934/dcds.2016056 |
[4] |
M. Keel, Tristan Roy, Terence Tao. Global well-posedness of the Maxwell-Klein-Gordon equation below the energy norm. Discrete and Continuous Dynamical Systems, 2011, 30 (3) : 573-621. doi: 10.3934/dcds.2011.30.573 |
[5] |
Hartmut Pecher. Local well-posedness for the nonlinear Dirac equation in two space dimensions. Communications on Pure and Applied Analysis, 2014, 13 (2) : 673-685. doi: 10.3934/cpaa.2014.13.673 |
[6] |
Yuan Xu, Fujun Zhou, Weihua Gong. Global Well-posedness and Optimal Decay Rate of the Quasi-static Incompressible Navier–Stokes–Fourier–Maxwell–Poisson System. Communications on Pure and Applied Analysis, 2022, 21 (5) : 1537-1565. doi: 10.3934/cpaa.2022028 |
[7] |
Thomas Y. Hou, Congming Li. Global well-posedness of the viscous Boussinesq equations. Discrete and Continuous Dynamical Systems, 2005, 12 (1) : 1-12. doi: 10.3934/dcds.2005.12.1 |
[8] |
Nikolaos Bournaveas. Local well-posedness for a nonlinear dirac equation in spaces of almost critical dimension. Discrete and Continuous Dynamical Systems, 2008, 20 (3) : 605-616. doi: 10.3934/dcds.2008.20.605 |
[9] |
Hartmut Pecher. Corrigendum of "Local well-posedness for the nonlinear Dirac equation in two space dimensions". Communications on Pure and Applied Analysis, 2015, 14 (2) : 737-742. doi: 10.3934/cpaa.2015.14.737 |
[10] |
Kiyeon Lee. Low regularity well-posedness of Hartree type Dirac equations in 2, 3-dimensions. Communications on Pure and Applied Analysis, 2021, 20 (11) : 3683-3702. doi: 10.3934/cpaa.2021126 |
[11] |
Tadahiro Oh, Yuzhao Wang. On global well-posedness of the modified KdV equation in modulation spaces. Discrete and Continuous Dynamical Systems, 2021, 41 (6) : 2971-2992. doi: 10.3934/dcds.2020393 |
[12] |
Takamori Kato. Global well-posedness for the Kawahara equation with low regularity. Communications on Pure and Applied Analysis, 2013, 12 (3) : 1321-1339. doi: 10.3934/cpaa.2013.12.1321 |
[13] |
Luc Molinet, Francis Ribaud. On global well-posedness for a class of nonlocal dispersive wave equations. Discrete and Continuous Dynamical Systems, 2006, 15 (2) : 657-668. doi: 10.3934/dcds.2006.15.657 |
[14] |
Jinkai Li, Edriss Titi. Global well-posedness of strong solutions to a tropical climate model. Discrete and Continuous Dynamical Systems, 2016, 36 (8) : 4495-4516. doi: 10.3934/dcds.2016.36.4495 |
[15] |
Dan-Andrei Geba, Kenji Nakanishi, Sarada G. Rajeev. Global well-posedness and scattering for Skyrme wave maps. Communications on Pure and Applied Analysis, 2012, 11 (5) : 1923-1933. doi: 10.3934/cpaa.2012.11.1923 |
[16] |
Zhaoyang Yin. Well-posedness, blowup, and global existence for an integrable shallow water equation. Discrete and Continuous Dynamical Systems, 2004, 11 (2&3) : 393-411. doi: 10.3934/dcds.2004.11.393 |
[17] |
Seung-Yeal Ha, Jinyeong Park, Xiongtao Zhang. A global well-posedness and asymptotic dynamics of the kinetic Winfree equation. Discrete and Continuous Dynamical Systems - B, 2020, 25 (4) : 1317-1344. doi: 10.3934/dcdsb.2019229 |
[18] |
Hideo Takaoka. Global well-posedness for the Kadomtsev-Petviashvili II equation. Discrete and Continuous Dynamical Systems, 2000, 6 (2) : 483-499. doi: 10.3934/dcds.2000.6.483 |
[19] |
Tayeb Hadj Kaddour, Michael Reissig. Global well-posedness for effectively damped wave models with nonlinear memory. Communications on Pure and Applied Analysis, 2021, 20 (5) : 2039-2064. doi: 10.3934/cpaa.2021057 |
[20] |
Xujie Yang. Global well-posedness in a chemotaxis system with oxygen consumption. Communications on Pure and Applied Analysis, 2022, 21 (2) : 471-492. doi: 10.3934/cpaa.2021184 |
2021 Impact Factor: 1.588
Tools
Metrics
Other articles
by authors
[Back to Top]