We consider the follow-the-leader model for traffic flow. The position of each car $z_i(t)$ satisfies an ordinary differential equation, whose speed depends only on the relative position $z_{i+1}(t)$ of the car ahead. Each car perceives a local density $ρ_i(t)$. We study a discrete traveling wave profile $W(x)$ along which the trajectory $(ρ_i(t), z_i(t))$ traces such that $W(z_i(t)) = ρ_i(t)$ for all $i$ and $t>0$; see definition 2.2. We derive a delay differential equation satisfied by such profiles. Existence and uniqueness of solutions are proved, for the two-point boundary value problem where the car densities at $x\to±∞$ are given. Furthermore, we show that such profiles are locally stable, attracting nearby monotone solutions of the follow-the-leader model.
Citation: |
Figure 2. Numerical simulations for the approximate sequence $W_n(x)$ for various values of $\hat x_n$. We use $\rho_- = 0.3$, $\rho_+ = 0.7$, $\ell = 0.5$, $V = 1$, and $\phi(\rho) = 1-\rho$. The solid curve is the graph of $\psi(x) = \rho_+-0.2 e^{-\lambda_+x}$, plotted on the interval $0\le x\le 2$. The dotted curves are plots for $W_n(x)$ with $\hat x_n = 0, 0.1, 0.25, 0.5, 1$
B. Argall
, E. Cheleshkin
, J. M. Greenberg
, C. Hinde
and P. Lin
, A rigorous treatment of a follow-the-leader traffic model with traffic lights present, SIAM J. Appl. Math., 63 (2002)
, 149-168.
doi: 10.1137/S0036139901391215.![]() ![]() ![]() |
|
J. Aubin
, Macroscopic traffic models: Shifting from densities to "celerities", Appl. Math. Comput, 217 (2010)
, 963-971.
doi: 10.1016/j.amc.2010.02.032.![]() ![]() ![]() |
|
A. Aw
, A. Klar
, T. Materne
and M. Rascle
, Derivation of continuum traffic flow models from microscopic follow-the-leader models, SIAM J. Appl. Math, 63 (2002)
, 259-278.
doi: 10.1137/S0036139900380955.![]() ![]() ![]() |
|
N. Bellomo
, A. Bellouquid
, J. Nieto
and J. Soler
, On the multiscale modeling of vehicular traffic: From kinetic to hydrodynamics, Discrete Contin. Dyn. Syst. Ser. B, 19 (2014)
, 1869-1888.
doi: 10.3934/dcdsb.2014.19.1869.![]() ![]() ![]() |
|
R. M. Colombo
and A. Marson
, A Hölder continuous ODE related to traffic flow, Proc. Roy. Soc. Edinburgh Sect. A, 133 (2003)
, 759-772.
doi: 10.1017/S0308210500002663.![]() ![]() ![]() |
|
R. M. Colombo
and E. Rossi
, On the micro-macro limit in traffic flow, Rend. Semin. Mat. Univ. Padova, 131 (2014)
, 217-235.
doi: 10.4171/RSMUP/131-13.![]() ![]() ![]() |
|
E. Cristiani
and S. Sahu
, On the micro-to-macro limit for first-order traffic flow models on networks, Netw. Heterog. Media, 11 (2016)
, 395-413.
doi: 10.3934/nhm.2016002.![]() ![]() ![]() |
|
M. Di Francesco
and M. D. Rosini
, Rigorous derivation of nonlinear scalar conservation laws from follow-the-leader type models via many particle limit, Arch. Ration. Mech. Anal., 217 (2015)
, 831-871.
doi: 10.1007/s00205-015-0843-4.![]() ![]() ![]() |
|
R. D. Driver
and M. D. Rosini
, Existence and stability of solutions of a delay-differential system, Arch. Rational Mech. Anal., 10 (1962)
, 401-426.
doi: 10.1007/BF00281203.![]() ![]() ![]() |
|
R. D. Driver, Ordinary and Delay Differential Equations, Applied Mathematical Sciences, 20, Springer-Verlag, New York-Heidelberg, 1977.
![]() ![]() |
|
P. Goatin
and F. Rossi
, A traffic flow model with non-smooth metric interaction: well-posedness and micro-macro limit, Commun. Math. Sci., 15 (2017)
, 261-287.
doi: 10.4310/CMS.2017.v15.n1.a12.![]() ![]() ![]() |
|
G. Guerra
and W. Shen
, Existence and stability of traveling waves for an integro-differential equation for slow erosion, J. Differential Equations, 256 (2014)
, 253-282.
doi: 10.1016/j.jde.2013.09.003.![]() ![]() ![]() |
|
H. Holden
and N. H. Risebro
, Continuum limit of Follow-the-Leader models -a short proof, Discrete Contin. Dyn. Syst., 38 (2018)
, 715-722.
![]() ![]() |
|
H. Holden and N. H. Risebro, Follow-the-Leader models can be viewed as a numerical approximation to the Lighthill-Whitham-Richards model for traffic flow, preprint 2017.
![]() |
|
M. J. Lighthill
and G. B. Whitham
, On kinematic waves. Ⅱ. A theory of traffic flow on long crowded roads, Proc. Roy. Soc. London. Ser. A., 229 (1955)
, 317-345.
doi: 10.1098/rspa.1955.0089.![]() ![]() ![]() |
|
E. Rossi
, A justification of a LWR model based on a follow the leader description, Discrete Contin. Dyn. Syst. Ser. S, 7 (2014)
, 579-591.
doi: 10.3934/dcdss.2014.7.579.![]() ![]() ![]() |
|
W. Shen, http://www.personal.psu.edu/wxs27/SIM/TrafficODE/, Scilab code used to generate the approximate solutions in this paper, 2017.
![]() |
|
W. Shen, Traveling wave profiles for a Follow-the-Leader model for traffic flow with rough road condition, preprint, 2017. To appear in Netw. Heterog. Media, 2018.
![]() |
Typical graphs of
Numerical simulations for the approximate sequence
Numerical simulations of stationary profiles