\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Traveling waves for a microscopic model of traffic flow

  • * Corresponding author: Wen Shen

    * Corresponding author: Wen Shen 
Abstract Full Text(HTML) Figure(3) Related Papers Cited by
  • We consider the follow-the-leader model for traffic flow. The position of each car $z_i(t)$ satisfies an ordinary differential equation, whose speed depends only on the relative position $z_{i+1}(t)$ of the car ahead. Each car perceives a local density $ρ_i(t)$. We study a discrete traveling wave profile $W(x)$ along which the trajectory $(ρ_i(t), z_i(t))$ traces such that $W(z_i(t)) = ρ_i(t)$ for all $i$ and $t>0$; see definition 2.2. We derive a delay differential equation satisfied by such profiles. Existence and uniqueness of solutions are proved, for the two-point boundary value problem where the car densities at $x\to±∞$ are given. Furthermore, we show that such profiles are locally stable, attracting nearby monotone solutions of the follow-the-leader model.

    Mathematics Subject Classification: Primary: 35L02, 35L65; Secondary: 34B99, 35Q99.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • Figure 1.  Typical graphs of $G(\lambda)$ and location of the zeros

    Figure 2.  Numerical simulations for the approximate sequence $W_n(x)$ for various values of $\hat x_n$. We use $\rho_- = 0.3$, $\rho_+ = 0.7$, $\ell = 0.5$, $V = 1$, and $\phi(\rho) = 1-\rho$. The solid curve is the graph of $\psi(x) = \rho_+-0.2 e^{-\lambda_+x}$, plotted on the interval $0\le x\le 2$. The dotted curves are plots for $W_n(x)$ with $\hat x_n = 0, 0.1, 0.25, 0.5, 1$

    Figure 3.  Numerical simulations of stationary profiles $W(x)$ with various values of $(\rho_-, \rho_+)$

  •   B. Argall , E. Cheleshkin , J. M. Greenberg , C. Hinde  and  P. Lin , A rigorous treatment of a follow-the-leader traffic model with traffic lights present, SIAM J. Appl. Math., 63 (2002) , 149-168.  doi: 10.1137/S0036139901391215.
      J. Aubin , Macroscopic traffic models: Shifting from densities to "celerities", Appl. Math. Comput, 217 (2010) , 963-971.  doi: 10.1016/j.amc.2010.02.032.
      A. Aw , A. Klar , T. Materne  and  M. Rascle , Derivation of continuum traffic flow models from microscopic follow-the-leader models, SIAM J. Appl. Math, 63 (2002) , 259-278.  doi: 10.1137/S0036139900380955.
      N. Bellomo , A. Bellouquid , J. Nieto  and  J. Soler , On the multiscale modeling of vehicular traffic: From kinetic to hydrodynamics, Discrete Contin. Dyn. Syst. Ser. B, 19 (2014) , 1869-1888.  doi: 10.3934/dcdsb.2014.19.1869.
      R. M. Colombo  and  A. Marson , A Hölder continuous ODE related to traffic flow, Proc. Roy. Soc. Edinburgh Sect. A, 133 (2003) , 759-772.  doi: 10.1017/S0308210500002663.
      R. M. Colombo  and  E. Rossi , On the micro-macro limit in traffic flow, Rend. Semin. Mat. Univ. Padova, 131 (2014) , 217-235.  doi: 10.4171/RSMUP/131-13.
      E. Cristiani  and  S. Sahu , On the micro-to-macro limit for first-order traffic flow models on networks, Netw. Heterog. Media, 11 (2016) , 395-413.  doi: 10.3934/nhm.2016002.
      M. Di Francesco  and  M. D. Rosini , Rigorous derivation of nonlinear scalar conservation laws from follow-the-leader type models via many particle limit, Arch. Ration. Mech. Anal., 217 (2015) , 831-871.  doi: 10.1007/s00205-015-0843-4.
      R. D. Driver  and  M. D. Rosini , Existence and stability of solutions of a delay-differential system, Arch. Rational Mech. Anal., 10 (1962) , 401-426.  doi: 10.1007/BF00281203.
      R. D. Driver, Ordinary and Delay Differential Equations, Applied Mathematical Sciences, 20, Springer-Verlag, New York-Heidelberg, 1977.
      P. Goatin  and  F. Rossi , A traffic flow model with non-smooth metric interaction: well-posedness and micro-macro limit, Commun. Math. Sci., 15 (2017) , 261-287.  doi: 10.4310/CMS.2017.v15.n1.a12.
      G. Guerra  and  W. Shen , Existence and stability of traveling waves for an integro-differential equation for slow erosion, J. Differential Equations, 256 (2014) , 253-282.  doi: 10.1016/j.jde.2013.09.003.
      H. Holden  and  N. H. Risebro , Continuum limit of Follow-the-Leader models -a short proof, Discrete Contin. Dyn. Syst., 38 (2018) , 715-722. 
      H. Holden and N. H. Risebro, Follow-the-Leader models can be viewed as a numerical approximation to the Lighthill-Whitham-Richards model for traffic flow, preprint 2017.
      M. J. Lighthill  and  G. B. Whitham , On kinematic waves. Ⅱ. A theory of traffic flow on long crowded roads, Proc. Roy. Soc. London. Ser. A., 229 (1955) , 317-345.  doi: 10.1098/rspa.1955.0089.
      E. Rossi , A justification of a LWR model based on a follow the leader description, Discrete Contin. Dyn. Syst. Ser. S, 7 (2014) , 579-591.  doi: 10.3934/dcdss.2014.7.579.
      W. Shen, http://www.personal.psu.edu/wxs27/SIM/TrafficODE/, Scilab code used to generate the approximate solutions in this paper, 2017.
      W. Shen, Traveling wave profiles for a Follow-the-Leader model for traffic flow with rough road condition, preprint, 2017. To appear in Netw. Heterog. Media, 2018.
  • 加载中

Figures(3)

SHARE

Article Metrics

HTML views(459) PDF downloads(187) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return