In this paper we investigate a free boundary problem for the diffusive Leslie-Gower prey-predator model with double free boundaries in one space dimension. This system models the expanding of an invasive or new predator species in which the free boundaries represent expanding fronts of the predator species. We first prove the existence, uniqueness and regularity of global solution. Then provide a spreading-vanishing dichotomy, namely the predator species either successfully spreads to infinity as $t\to∞$ at both fronts and survives in the new environment, or it spreads within a bounded area and dies out in the long run. The long time behavior of $(u, v)$ and criteria for spreading and vanishing are also obtained. Because the term $v/u$ (which appears in the second equation) may be unbounded when $u$ nears zero, it will bring some difficulties for our study.
Citation: |
H. Bunting, Y. H. Du and K. Krakowski, Spreading speed revisited: Analysis of a free boundary model, Networks and Heterogeneous Media (special issue dedicated to H. Matano), 7(2012), 583-603.
doi: 10.3934/nhm.2012.7.583.![]() ![]() ![]() |
|
J. F. Cao
, W. T. Li
and M. Zhao
, A nonlocal diffusion model with free boundaries in spatial heterogeneous environment, J. Math. Anal. Appl., 449 (2017)
, 1015-1035.
doi: 10.1016/j.jmaa.2016.12.044.![]() ![]() ![]() |
|
S. S. Chen, J. P. Shi and J. J. Wei, Global stability and Hopf bifurcation in a delayed diffusive Leslie-Gower predator-prey system, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 22 (2012), 1250061, 11 pp.
doi: 10.1142/S0218127412500617.![]() ![]() ![]() |
|
Y. H. Du
, Z. M. Guo
and R. Peng
, A diffusive logistic model with a free boundary in time-periodic environment, J. Funct. Anal., 265 (2013)
, 2089-2142.
doi: 10.1016/j.jfa.2013.07.016.![]() ![]() ![]() |
|
Y. H. Du
and S. B. Hsu
, A diffusive predator-prey model in heterogeneous environment, J. Differential Equations, 203 (2004)
, 331-364.
doi: 10.1016/j.jde.2004.05.010.![]() ![]() ![]() |
|
Y. H. Du
and X. Liang
, Pulsating semi-waves in periodic media and spreading speed determined by a free boundary model, Ann. Inst. Henri Poincare Anal. Non Lineaire, 32 (2015)
, 279-305.
doi: 10.1016/j.anihpc.2013.11.004.![]() ![]() ![]() |
|
Y. H. Du
and Z. G. Lin
, Spreading-vanishing dichotomy in the diffusive logistic model with a free boundary, SIAM J. Math. Anal., 42 (2010)
, 377-405.
doi: 10.1137/090771089.![]() ![]() ![]() |
|
Y. H. Du
and Z. G. Lin
, The diffusive competition model with a free boundary: Invasion of a superior or inferior competitor, Discrete Cont. Dyn. Syst.-B, 19 (2014)
, 3105-3132.
doi: 10.3934/dcdsb.2014.19.3105.![]() ![]() ![]() |
|
Y. H. Du
and B. D. Lou
, Spreading and vanishing in nonlinear diffusion problems with free boundaries, J. Eur. Math. Soc. (JEMS), 17 (2015)
, 2673-2724.
doi: 10.4171/JEMS/568.![]() ![]() ![]() |
|
Y. H. Du
, M. X. Wang
and M. L. Zhou
, Semi-wave and spreading speed for the diffusive competition model with a free boundary, J. Math. Pures Appl., 107 (2017)
, 253-287.
doi: 10.1016/j.matpur.2016.06.005.![]() ![]() ![]() |
|
J. Ge
, I. K. Kim
, Z. G. Lin
and H. P. Zhu
, A SIS reaction-diffusion-advection model in a low-risk and high-risk domain, J. Differential Equations, 259 (2015)
, 5486-5509.
doi: 10.1016/j.jde.2015.06.035.![]() ![]() ![]() |
|
H. Gu
, B. D. Lou
and M. L. Zhou
, Long time behavior for solutions of Fisher-KPP equation with advection and free boundaries, J. Funct. Anal., 269 (2015)
, 1714-1768.
doi: 10.1016/j.jfa.2015.07.002.![]() ![]() ![]() |
|
J. S. Guo
and C.-H. Wu
, On a free boundary problem for a two-species weak competition system, J. Dyn. Diff. Equat., 24 (2012)
, 873-895.
doi: 10.1007/s10884-012-9267-0.![]() ![]() ![]() |
|
J. S. Guo
and C.-H. Wu
, Dynamics for a two-species competition-diffusion model with two free boundaries, Nonlinearity, 28 (2015)
, 1-27.
doi: 10.1088/0951-7715/28/1/1.![]() ![]() ![]() |
|
Y. Kaneko
and H. Matsuzawa
, Spreading speed and sharp asymptotic profiles of solutions in free boundary problems for reaction-advection-diffusion equations, J. Math. Anal. Appl., 428 (2015)
, 43-76.
doi: 10.1016/j.jmaa.2015.02.051.![]() ![]() ![]() |
|
Y. Kawai
and Y. Yamada
, Multiple spreading phenomena for a free boundary problem of a reaction-diffusion equation with a certain class of bistable nonlinearity, J. Differential Equations, 261 (2016)
, 538-572.
doi: 10.1016/j.jde.2016.03.017.![]() ![]() ![]() |
|
O. A. Ladyzenskaja, U. A. Solonnikov and N. N. Ural'ceva, Linear and Quasilinear Equations of Parabolic Type, Academic Press, New York, London, 1968.
![]() ![]() |
|
P. H. Leslie
and J. C. Gower
, The properties of a stochastic model for the predator-prey type of interaction between two species, Biometrika, 47 (1960)
, 219-234.
doi: 10.1093/biomet/47.3-4.219.![]() ![]() ![]() |
|
H. Monobe
and C.-H. Wu
, On a free boundary problem for a reaction-diffusion-advection logistic model in heterogeneous environment, J. Differential Equations, 261 (2016)
, 6144-6177.
doi: 10.1016/j.jde.2016.08.033.![]() ![]() ![]() |
|
Y. W. Qi
and Y. Zhu
, Global stability of Lesile-type predator-prey model, Methods and Applications of Analysis, 23 (2016)
, 259-268.
doi: 10.4310/MAA.2016.v23.n3.a3.![]() ![]() ![]() |
|
N. K. Sun, B. D. Lou and M. L. Zhou, Fisher-KPP equation with free boundaries and time-periodic advections, Calc. Var. Partial Diff. Equ., 56 (2017), Art. 61, 36 pp.
doi: 10.1007/s00526-017-1165-1..![]() ![]() ![]() |
|
M. X. Wang
, On some free boundary problems of the prey-predator model, J. Differential Equations, 256 (2014)
, 3365-3394.
doi: 10.1016/j.jde.2014.02.013.![]() ![]() ![]() |
|
M. X. Wang
, Spreading and vanishing in the diffusive prey-predator model with a free boundary, Commun. Nonlinear Sci. Numer. Simulat., 23 (2015)
, 311-327.
doi: 10.1016/j.cnsns.2014.11.016.![]() ![]() ![]() |
|
M. X. Wang
, The diffusive logistic equation with a free boundary and sign-changing coefficient, J. Differential Equations, 258 (2015)
, 1252-1266.
doi: 10.1016/j.jde.2014.10.022.![]() ![]() ![]() |
|
M. X. Wang
, A diffusive logistic equation with a free boundary and sign-changing coefficient in time-periodic environment, J. Funct. Anal., 270 (2016)
, 483-508.
doi: 10.1016/j.jfa.2015.10.014.![]() ![]() ![]() |
|
M. Wang
, W. J. Sheng
and Y. Zhang
, Spreading and vanishing in a diffusive prey-predator model with variable intrinsic growth rate and free boundary, J. Math. Anal. Appl., 441 (2016)
, 309-329.
doi: 10.1016/j.jmaa.2016.04.007.![]() ![]() ![]() |
|
M. X. Wang
and Y. Zhang
, Two kinds of free boundary problems for the diffusive prey-predator model, Nonlinear Anal.: Real World Appl., 24 (2015)
, 73-82.
doi: 10.1016/j.nonrwa.2015.01.004.![]() ![]() ![]() |
|
M. X. Wang and Y. Zhang, The time-periodic diffusive competition models with a free boundary and sign-changing growth rates, Z. Angew. Math. Phys., 67 (2016), Art. 132, 24 pp.
doi: 10.1007/s00033-016-0729-9.![]() ![]() ![]() |
|
M. X. Wang
and Y. Zhang
, Note on a two-species competition-diffusion model with two free boundaries, Nonlinear Anal: TMA, 159 (2017)
, 458-467.
doi: 10.1016/j.na.2017.01.005.![]() ![]() ![]() |
|
M. X. Wang
and Y. Zhang
, Dynamics for a diffusive prey-predator model with different free boundaries, J. Differental Equatons, 264 (2018)
, 3527-3558.
doi: 10.1016/j.jde.2017.11.027.![]() ![]() ![]() |
|
M. X. Wang
and J. F. Zhao
, Free boundary problems for a Lotka-Volterra competition system, J. Dyn. Diff. Equat., 26 (2014)
, 655-672.
doi: 10.1007/s10884-014-9363-4.![]() ![]() ![]() |
|
M. X. Wang
and J. F. Zhao
, A free boundary problem for a predator-prey model with double free boundaries, J. Dyn. Diff. Equat., 29 (2017)
, 957-979.
doi: 10.1007/s10884-015-9503-5.![]() ![]() ![]() |
|
M. X. Wang
and Y. G. Zhao
, A semilinear parabolic system with a free boundary, Z. Angew. Math. Phys., 66 (2015)
, 3309-3332.
doi: 10.1007/s00033-015-0582-2.![]() ![]() ![]() |
|
L. Wei, G. H. Zhang and M. L. Zhou, Long time behavior for solutions of the diffusive logistic equation with advection and free boundary, Calc. Var. Partial Diff. Equ., 55 (2016), Art. 95, 34 pp.
doi: 10.1007/s00526-016-1039-y.![]() ![]() ![]() |
|
C.-H. Wu
, The minimal habitat size for spreading in a weak competition system with two free boundaries, J. Differential Equations, 259 (2015)
, 873-897.
doi: 10.1016/j.jde.2015.02.021.![]() ![]() ![]() |
|
Y. Zhang
and M. X. Wang
, A free boundary problem of the ratio-dependent prey-predator model, Applicable Anal., 94 (2015)
, 2147-2167.
doi: 10.1080/00036811.2014.979806.![]() ![]() ![]() |
|
J. F. Zhao
and M. X. Wang
, A free boundary problem of a predator-prey model with higher dimension and heterogeneous environment, Nonlinear Anal.: Real World Appl., 16 (2014)
, 250-263.
doi: 10.1016/j.nonrwa.2013.10.003.![]() ![]() ![]() |
|
Y. G. Zhao
and M. X. Wang
, Free boundary problems for the diffusive competition system in higher dimension with sign-changing coefficients, IMA J. Appl. Math., 81 (2016)
, 255-280.
doi: 10.1093/imamat/hxv035.![]() ![]() ![]() |
|
Y. G. Zhao
and M. X. Wang
, Asymptotic behavior of solutions to a nonlinear Stefan problem with different moving parameters, Nonlinear Anal.: Real World Appl., 31 (2016)
, 166-178.
doi: 10.1016/j.nonrwa.2016.02.001.![]() ![]() ![]() |
|
L. Zhou
, S. Zhang
and Z. H. Liu
, An evolutional free-boundary problem of a reaction-diffusion-advection system, Proc. Royal Soc. Edinburgh A, 147 (2017)
, 615-648.
doi: 10.1017/S0308210516000226.![]() ![]() ![]() |