We present some interior regularity criteria of the 3-D Navier-Stokes equations involving two components of the velocity. These results in particular imply that if the solution is singular at one point, then at least two components of the velocity have to blow up at the same point.
Citation: |
L. Caffarelli
, R. Kohn
and L. Nirenberg
, Partial regularity of suitable weak solutions of the Navier-Stokes equations, Comm. Pure Appl. Math., 35 (1982)
, 771-831.
doi: 10.1002/cpa.3160350604.![]() ![]() ![]() |
|
C. Cao
and E. S. Titi
, Regularity criteria for the three dimensional Navier-Stokes equations, Indiana Univ. Math. J., 57 (2008)
, 2643-2661.
doi: 10.1512/iumj.2008.57.3719.![]() ![]() ![]() |
|
C. Cao
and E. S. Titi
, Global regularity criterion of the 3D Navier-Stokes equations involving one entry of the velocity gradient tensor, Arch. Ration. Mech. Anal., 202 (2011)
, 919-932.
doi: 10.1007/s00205-011-0439-6.![]() ![]() ![]() |
|
J. Y. Chemin
and P. Zhang
, On the critical one component regularity for 3-D Navier-Stokes system, Ann. Sci. Éc. Norm. Supér., 49 (2016)
, 131-167.
doi: 10.24033/asens.2278.![]() ![]() ![]() |
|
L. Escauriaza
, G. A. Seregin
and V. Šverák
, ${{L}^{3,\infty }}$ solutions to the Navier-Stokes equations and backward uniqueness, Russ. Math. Surveys, 58 (2003)
, 211-250.
![]() ![]() |
|
Y. Giga
, Solutions for semilinear parabolic equations in $L^p$ and regularity of weak solutions of the Navier-Stokes system, J. Differential Equations, 62 (1986)
, 186-212.
doi: 10.1016/0022-0396(86)90096-3.![]() ![]() ![]() |
|
S. Gustafson
, K. Kang
and T.-P. Tsai
, Interior regularity criteria for suitable weak solutions of the Navier-Stokes equations, Comm. Math. Phys., 273 (2007)
, 161-176.
doi: 10.1007/s00220-007-0214-6.![]() ![]() ![]() |
|
I. Kukavica
, On partial regularity for the Navier-Stokes equations, Discrete Contin. Dyn. Syst., 21 (2008)
, 717-728.
doi: 10.3934/dcds.2008.21.717.![]() ![]() ![]() |
|
I. Kukavica
and M. Ziane
, One component regularity for the Navier-Stokes equation, Nonlinearity, 19 (2006)
, 453-469.
doi: 10.1088/0951-7715/19/2/012.![]() ![]() ![]() |
|
O. A. Ladyzhenskaya
and G. A. Seregin
, On partial regularity of suitable weak solutions to the three-dimensional Navier-Stokes equations, J. Math. Fluid Mech., 1 (1999)
, 356-387.
doi: 10.1007/s000210050015.![]() ![]() ![]() |
|
J. Leray
, Sur le mouvement d'un liquids visqeux emplissant l'espace, Acta Math., 63 (1934)
, 193-248.
doi: 10.1007/BF02547354.![]() ![]() ![]() |
|
F. H. Lin
, A new proof of the Caffarelli-Kohn-Nirenberg theorem, Comm. Pure Appl. Math., 51 (1998)
, 241-257.
doi: 10.1002/(SICI)1097-0312(199803)51:3<241::AID-CPA2>3.0.CO;2-A.![]() ![]() ![]() |
|
J. Nečas
, M. Růžička
and V. Šverák
, On Leray's self-similar solutions of the Navier-Stokes equations, Acta Math., 176 (1996)
, 283-294.
doi: 10.1007/BF02551584.![]() ![]() ![]() |
|
V. Scheffer
, Partial regularity of solutions to the Navier-Stokes equations, Pacific J. Math., 66 (1976)
, 535-562.
doi: 10.2140/pjm.1976.66.535.![]() ![]() ![]() |
|
V. Scheffer
, Hausdorff measure and the Navier-Stokes equations, Commun. Math. Phy., 55 (1977)
, 97-112.
doi: 10.1007/BF01626512.![]() ![]() ![]() |
|
V. Scheffer
, The Navier-Stokes equations on a bounded domain, Commun. Math. Phy., 73 (1980)
, 1-42.
doi: 10.1007/BF01942692.![]() ![]() ![]() |
|
G. A. Seregin
, Estimate of suitable solutions to the Navier-Stokes equations in critical Morrey spaces, Journal of Mathematical Sciences, 143 (2007)
, 2961-2968.
![]() ![]() |
|
J. Serrin, The initial value problem for the Navier-stokes equations, in Nonlinear problems(R. E. Langer Ed.), Univ. of Wisconsin Press, Madison, (1963), 69–98.
![]() ![]() |
|
M. Struwe
, On partial regularity results for the Navier-Stokes equations, Comm. Pure Appl. Math., 41 (1988)
, 437-458.
doi: 10.1002/cpa.3160410404.![]() ![]() ![]() |
|
G. Tian
and Z. Xin
, Gradient estimation on Navier-Stokes equations, Comm. Anal. Geom., 7 (1999)
, 221-257.
doi: 10.4310/CAG.1999.v7.n2.a1.![]() ![]() ![]() |
|
A. Vasseur
, A new proof of partial regularity of solutions to Navier-Stokes equations, Nonlinear Differential Equations Appl., 14 (2007)
, 753-785.
doi: 10.1007/s00030-007-6001-4.![]() ![]() ![]() |
|
W. Wang
and Z. Zhang
, On the interior regularity criterion and the number of singular points to the Navier-Stokes equations, J. Anal. Math., 123 (2014)
, 139-170.
doi: 10.1007/s11854-014-0016-7.![]() ![]() ![]() |
|
Y. Zhou
and M. Pokorný
, On the regularity of the solutions of the Navier-Stokes equations via one velocity component, Nonlinearity, 23 (2010)
, 1097-1107.
doi: 10.1088/0951-7715/23/5/004.![]() ![]() ![]() |