
-
Previous Article
Remarks on the critical coupling strength for the Cucker-Smale model with unit speed
- DCDS Home
- This Issue
-
Next Article
Partially hyperbolic sets with a dynamically minimal lamination
Asymptotic properties of various stochastic Cucker-Smale dynamics
Institut de Mathématiques de Toulouse, 118, route de Narbonne, F-31062 Toulouse Cedex 9, France |
Starting from the stochastic Cucker-Smale model introduced in [
References:
[1] |
M. Agueh, R. Illner and A. Richardson,
Analysis and simulations of a refined flocking and swarming model of Cucker-Smale type, Kinet. Relat. Models, 4 (2011), 1-16.
doi: 10.3934/krm.2011.4.1. |
[2] |
S. Ahn, Y. Ha and A. Richardson,
Stochastic flocking dynamics of the Cucker-Smale model with multiplicative white noises, J. Math. Phys., 51 (2011), 103301, 17 pp.
|
[3] |
D. Aldous,
Exchangeability and related topics, Lectures Notes in Math., 1117 (1983), 1-198.
|
[4] |
D. Bakry, P. Cattiaux and A. Guillin,
Rate of convergence for ergodic Markov processes: Lyapunov versus Poincaré, J. Funct. Anal., 254 (2008), 727-759.
doi: 10.1016/j.jfa.2007.11.002. |
[5] |
P. Billingsley, Convergence of Probability Measures, Wiley, 1968.
![]() ![]() |
[6] |
F. Bolley, J. Cañizo and J. Carrillo,
Stochastic mean-field limit: Non-Lipschitz forces and swarming, Math. Models Methods Appl. Sci., 21 (2011), 2179-2210.
doi: 10.1142/S0218202511005702. |
[7] |
P. Cattiaux, D. Chafaï and A. Guillin,
Central limit theorems for additive functionals of ergodic Markov diffusions processes, ALEA Lat. Am. J. Probab. Math. Stat., 9 (2012), 337-382.
|
[8] |
P. Cattiaux, F. Delebecque and L. Pédèches, Stochastic Cucker-Smale models: Old and new, Preprint. |
[9] |
F. Cucker and J.-G. Dong,
Avoiding collisions in flocks, IEEE Trans. Automat. Control, 55 (2010), 1238-1243.
doi: 10.1109/TAC.2010.2042355. |
[10] |
F. Cucker and E. Mordecki,
Flocking in noisy environments, J. Math. Pures Appl., 89 (2008), 278-296.
doi: 10.1016/j.matpur.2007.12.002. |
[11] |
F. Cucker and S. Smale,
Emergent behavior in flocks, IEEE Trans. Automat. Control, 52 (2007), 852-861.
doi: 10.1109/TAC.2007.895842. |
[12] |
F. Cucker and S. Smale,
On the mathematics of emergence, Jpn. J. Math., 2 (2007), 197-227.
doi: 10.1007/s11537-007-0647-x. |
[13] |
D. Down, S. Meyn and R. Tweedie,
Exponential and uniform ergodicity of Markov processes, Ann. Probab., 23 (1995), 1671-1691.
doi: 10.1214/aop/1176987798. |
[14] |
S.-Y. Ha, K. Lee and D. Levy,
Emergence of time-asymptotic flocking in a stochastic Cucker-Smale system, Commun. Math. Sci., 7 (2009), 453-469.
doi: 10.4310/CMS.2009.v7.n2.a9. |
[15] |
S.-Y. Ha and J.-G. Liu,
A simple proof of the Cucker-Smale flocking dynamics and mean-field limit, Commun Math. Sci., 7 (2009), 297-325.
doi: 10.4310/CMS.2009.v7.n2.a2. |
[16] |
S.-Y. Ha and E. Tadmor,
From particle to kinetic and hydrodynamic descriptions of flocking, Kinet. Relat. Models, 1 (2008), 415-435.
doi: 10.3934/krm.2008.1.415. |
[17] |
K. Itô and M. Nisio,
On stationary solutions of a stochastic differential equation, J. Math. Kyoto Univ., 4 (1964), 1-75.
doi: 10.1215/kjm/1250524705. |
[18] |
S. Méléard,
Asymptotic behaviour of some interacting particle systems; McKean-Vlasov and Boltzmann models, Lectures Notes in Math., 1627 (1995), 42-95.
|
[19] |
S. Meyn and R. Tweedie, Markov Chains and Stochastic Stability, Springer-Verlag, 1993.
![]() ![]() |
[20] |
L. Pédèches, Exponential ergodicity for a class of non-Markovian stochastic processes, Preprint. |
[21] |
M. Scheutzow,
Qualitative behaviour of stochastic delay equations with a bounded memory, Stochastics, 12 (1984), 41-80.
doi: 10.1080/17442508408833294. |
[22] |
J. Shen,
Cucker-Smale flocking under hierarchical leadership, SIAM J. Appl. Math., 68 (2007/08), 694-719.
|
[23] |
A. Sznitman,
Topics in propagation of chaos, Lectures Notes in Math., 1464 (1991), 165-251.
|
[24] |
T. Ton, N. Linh and A. Yagi,
Flocking and non-flocking behavior in a stochastic Cucker-Smale system, Anal. Appl. (Singap.), 12 (2014), 63-73.
doi: 10.1142/S0219530513500255. |
show all references
References:
[1] |
M. Agueh, R. Illner and A. Richardson,
Analysis and simulations of a refined flocking and swarming model of Cucker-Smale type, Kinet. Relat. Models, 4 (2011), 1-16.
doi: 10.3934/krm.2011.4.1. |
[2] |
S. Ahn, Y. Ha and A. Richardson,
Stochastic flocking dynamics of the Cucker-Smale model with multiplicative white noises, J. Math. Phys., 51 (2011), 103301, 17 pp.
|
[3] |
D. Aldous,
Exchangeability and related topics, Lectures Notes in Math., 1117 (1983), 1-198.
|
[4] |
D. Bakry, P. Cattiaux and A. Guillin,
Rate of convergence for ergodic Markov processes: Lyapunov versus Poincaré, J. Funct. Anal., 254 (2008), 727-759.
doi: 10.1016/j.jfa.2007.11.002. |
[5] |
P. Billingsley, Convergence of Probability Measures, Wiley, 1968.
![]() ![]() |
[6] |
F. Bolley, J. Cañizo and J. Carrillo,
Stochastic mean-field limit: Non-Lipschitz forces and swarming, Math. Models Methods Appl. Sci., 21 (2011), 2179-2210.
doi: 10.1142/S0218202511005702. |
[7] |
P. Cattiaux, D. Chafaï and A. Guillin,
Central limit theorems for additive functionals of ergodic Markov diffusions processes, ALEA Lat. Am. J. Probab. Math. Stat., 9 (2012), 337-382.
|
[8] |
P. Cattiaux, F. Delebecque and L. Pédèches, Stochastic Cucker-Smale models: Old and new, Preprint. |
[9] |
F. Cucker and J.-G. Dong,
Avoiding collisions in flocks, IEEE Trans. Automat. Control, 55 (2010), 1238-1243.
doi: 10.1109/TAC.2010.2042355. |
[10] |
F. Cucker and E. Mordecki,
Flocking in noisy environments, J. Math. Pures Appl., 89 (2008), 278-296.
doi: 10.1016/j.matpur.2007.12.002. |
[11] |
F. Cucker and S. Smale,
Emergent behavior in flocks, IEEE Trans. Automat. Control, 52 (2007), 852-861.
doi: 10.1109/TAC.2007.895842. |
[12] |
F. Cucker and S. Smale,
On the mathematics of emergence, Jpn. J. Math., 2 (2007), 197-227.
doi: 10.1007/s11537-007-0647-x. |
[13] |
D. Down, S. Meyn and R. Tweedie,
Exponential and uniform ergodicity of Markov processes, Ann. Probab., 23 (1995), 1671-1691.
doi: 10.1214/aop/1176987798. |
[14] |
S.-Y. Ha, K. Lee and D. Levy,
Emergence of time-asymptotic flocking in a stochastic Cucker-Smale system, Commun. Math. Sci., 7 (2009), 453-469.
doi: 10.4310/CMS.2009.v7.n2.a9. |
[15] |
S.-Y. Ha and J.-G. Liu,
A simple proof of the Cucker-Smale flocking dynamics and mean-field limit, Commun Math. Sci., 7 (2009), 297-325.
doi: 10.4310/CMS.2009.v7.n2.a2. |
[16] |
S.-Y. Ha and E. Tadmor,
From particle to kinetic and hydrodynamic descriptions of flocking, Kinet. Relat. Models, 1 (2008), 415-435.
doi: 10.3934/krm.2008.1.415. |
[17] |
K. Itô and M. Nisio,
On stationary solutions of a stochastic differential equation, J. Math. Kyoto Univ., 4 (1964), 1-75.
doi: 10.1215/kjm/1250524705. |
[18] |
S. Méléard,
Asymptotic behaviour of some interacting particle systems; McKean-Vlasov and Boltzmann models, Lectures Notes in Math., 1627 (1995), 42-95.
|
[19] |
S. Meyn and R. Tweedie, Markov Chains and Stochastic Stability, Springer-Verlag, 1993.
![]() ![]() |
[20] |
L. Pédèches, Exponential ergodicity for a class of non-Markovian stochastic processes, Preprint. |
[21] |
M. Scheutzow,
Qualitative behaviour of stochastic delay equations with a bounded memory, Stochastics, 12 (1984), 41-80.
doi: 10.1080/17442508408833294. |
[22] |
J. Shen,
Cucker-Smale flocking under hierarchical leadership, SIAM J. Appl. Math., 68 (2007/08), 694-719.
|
[23] |
A. Sznitman,
Topics in propagation of chaos, Lectures Notes in Math., 1464 (1991), 165-251.
|
[24] |
T. Ton, N. Linh and A. Yagi,
Flocking and non-flocking behavior in a stochastic Cucker-Smale system, Anal. Appl. (Singap.), 12 (2014), 63-73.
doi: 10.1142/S0219530513500255. |
[1] |
Lining Ru, Xiaoping Xue. Flocking of Cucker-Smale model with intrinsic dynamics. Discrete and Continuous Dynamical Systems - B, 2019, 24 (12) : 6817-6835. doi: 10.3934/dcdsb.2019168 |
[2] |
Martin Friesen, Oleksandr Kutoviy. Stochastic Cucker-Smale flocking dynamics of jump-type. Kinetic and Related Models, 2020, 13 (2) : 211-247. doi: 10.3934/krm.2020008 |
[3] |
Hyeong-Ohk Bae, Young-Pil Choi, Seung-Yeal Ha, Moon-Jin Kang. Asymptotic flocking dynamics of Cucker-Smale particles immersed in compressible fluids. Discrete and Continuous Dynamical Systems, 2014, 34 (11) : 4419-4458. doi: 10.3934/dcds.2014.34.4419 |
[4] |
Seung-Yeal Ha, Doheon Kim, Weiyuan Zou. Slow flocking dynamics of the Cucker-Smale ensemble with a chemotactic movement in a temperature field. Kinetic and Related Models, 2020, 13 (4) : 759-793. doi: 10.3934/krm.2020026 |
[5] |
Martial Agueh, Reinhard Illner, Ashlin Richardson. Analysis and simulations of a refined flocking and swarming model of Cucker-Smale type. Kinetic and Related Models, 2011, 4 (1) : 1-16. doi: 10.3934/krm.2011.4.1 |
[6] |
Seung-Yeal Ha, Jinwook Jung, Peter Kuchling. Emergence of anomalous flocking in the fractional Cucker-Smale model. Discrete and Continuous Dynamical Systems, 2019, 39 (9) : 5465-5489. doi: 10.3934/dcds.2019223 |
[7] |
Chun-Hsien Li, Suh-Yuh Yang. A new discrete Cucker-Smale flocking model under hierarchical leadership. Discrete and Continuous Dynamical Systems - B, 2016, 21 (8) : 2587-2599. doi: 10.3934/dcdsb.2016062 |
[8] |
Seung-Yeal Ha, Dongnam Ko, Yinglong Zhang, Xiongtao Zhang. Emergent dynamics in the interactions of Cucker-Smale ensembles. Kinetic and Related Models, 2017, 10 (3) : 689-723. doi: 10.3934/krm.2017028 |
[9] |
Yu-Jhe Huang, Zhong-Fu Huang, Jonq Juang, Yu-Hao Liang. Flocking of non-identical Cucker-Smale models on general coupling network. Discrete and Continuous Dynamical Systems - B, 2021, 26 (2) : 1111-1127. doi: 10.3934/dcdsb.2020155 |
[10] |
Young-Pil Choi, Samir Salem. Cucker-Smale flocking particles with multiplicative noises: Stochastic mean-field limit and phase transition. Kinetic and Related Models, 2019, 12 (3) : 573-592. doi: 10.3934/krm.2019023 |
[11] |
Jan Haskovec, Ioannis Markou. Asymptotic flocking in the Cucker-Smale model with reaction-type delays in the non-oscillatory regime. Kinetic and Related Models, 2020, 13 (4) : 795-813. doi: 10.3934/krm.2020027 |
[12] |
Zhisu Liu, Yicheng Liu, Xiang Li. Flocking and line-shaped spatial configuration to delayed Cucker-Smale models. Discrete and Continuous Dynamical Systems - B, 2021, 26 (7) : 3693-3716. doi: 10.3934/dcdsb.2020253 |
[13] |
Chiun-Chuan Chen, Seung-Yeal Ha, Xiongtao Zhang. The global well-posedness of the kinetic Cucker-Smale flocking model with chemotactic movements. Communications on Pure and Applied Analysis, 2018, 17 (2) : 505-538. doi: 10.3934/cpaa.2018028 |
[14] |
Hyunjin Ahn, Seung-Yeal Ha, Woojoo Shim. Emergent dynamics of a thermodynamic Cucker-Smale ensemble on complete Riemannian manifolds. Kinetic and Related Models, 2021, 14 (2) : 323-351. doi: 10.3934/krm.2021007 |
[15] |
Young-Pil Choi, Seung-Yeal Ha, Jeongho Kim. Propagation of regularity and finite-time collisions for the thermomechanical Cucker-Smale model with a singular communication. Networks and Heterogeneous Media, 2018, 13 (3) : 379-407. doi: 10.3934/nhm.2018017 |
[16] |
Mauro Rodriguez Cartabia. Cucker-Smale model with time delay. Discrete and Continuous Dynamical Systems, 2022, 42 (5) : 2409-2432. doi: 10.3934/dcds.2021195 |
[17] |
Roberto Natalini, Thierry Paul. On the mean field limit for Cucker-Smale models. Discrete and Continuous Dynamical Systems - B, 2022, 27 (5) : 2873-2889. doi: 10.3934/dcdsb.2021164 |
[18] |
Jinwook Jung, Peter Kuchling. Emergent dynamics of the fractional Cucker-Smale model under general network topologies. Communications on Pure and Applied Analysis, , () : -. doi: 10.3934/cpaa.2022077 |
[19] |
Seung-Yeal Ha, Shi Jin. Local sensitivity analysis for the Cucker-Smale model with random inputs. Kinetic and Related Models, 2018, 11 (4) : 859-889. doi: 10.3934/krm.2018034 |
[20] |
Marco Caponigro, Massimo Fornasier, Benedetto Piccoli, Emmanuel Trélat. Sparse stabilization and optimal control of the Cucker-Smale model. Mathematical Control and Related Fields, 2013, 3 (4) : 447-466. doi: 10.3934/mcrf.2013.3.447 |
2020 Impact Factor: 1.392
Tools
Metrics
Other articles
by authors
[Back to Top]