
-
Previous Article
Isolated singularities for elliptic equations with hardy operator and source nonlinearity
- DCDS Home
- This Issue
-
Next Article
Incompressible limit for the compressible flow of liquid crystals in $ L^p$ type critical Besov spaces
Stability of transonic jets with strong rarefaction waves for two-dimensional steady compressible Euler system
1. | Department of Mathematics, School of Science, Wuhan University of Technology, Wuhan 430070, China |
2. | Department of Mathematics, Center for PDE and Shanghai Key Laboratory of PMMP, East China Normal University, Shanghai 200241, China |
We study supersonic flow past a convex corner which is surrounded by quiescent gas. When the pressure of the upstream supersonic flow is larger than that of the quiescent gas, there appears a strong rarefaction wave to rarefy the supersonic gas. Meanwhile, a transonic characteristic discontinuity appears to separate the supersonic flow behind the rarefaction wave from the static gas. In this paper, we employ a wave front tracking method to establish structural stability of such a flow pattern under non-smooth perturbations of the upcoming supersonic flow. It is an initial-value/free-boundary problem for the two-dimensional steady non-isentropic compressible Euler system. The main ingredients are careful analysis of wave interactions and construction of suitable Glimm functional, to overcome the difficulty that the strong rarefaction wave has a large total variation.
References:
[1] |
D. Amadori,
Initial-boundary value problems for nonlinear systems of conservation laws, NoDEA Nonlinear Differential Equations Appl., 4 (1997), 1-42.
doi: 10.1007/PL00001406. |
[2] |
A. Bressan,
Hyperbolic Systems of Conservation Laws: The One-Dimensional Cauchy Problem, Oxford Lecture Series in Mathematics and its Applications, 20, Oxford University Press, Oxford, 2000. |
[3] |
G.-Q. G. Chen, J. Kuang and Y. Zhang,
Two-dimensional steady supersonic exothermically reacting Euler flow past Lipschitz bending walls, SIAM J. Math. Anal., 49 (2017), 818-873.
doi: 10.1137/16M1075089. |
[4] |
G. -Q. G. Chen, V. Kukreja and H. Yuan, Stability of transonic characteristic discontinuities in two-dimensional steady compressible Euler flows J. Math. Phys., 54 (2013), 021506, 24 pp.
doi: 10.1063/1.4790887. |
[5] |
G.-Q. G. Chen, V. Kukreja and H. Yuan,
Well-posedness of transonic characteristic discontinuities in two-dimensional steady compressible Euler flows, Z. Angew. Math. Phys., 64 (2013), 1711-1727.
doi: 10.1007/s00033-013-0312-6. |
[6] |
G.-Q. G. Chen, Y. Zhang and D. Zhu,
Stability of compressible vortex sheets in steady supersonic Euler flows over Lipschitz walls, SIAM J. Math. Anal., 38 (2006/07), 1660-1693.
doi: 10.1137/050642976. |
[7] |
G.-Q. G. Chen, Y. Zhang and D. Zhu,
Existence and stability of supersonic Euler flows past Lipschitz wedges, Arch. Rational Mech. Anal., 181 (2006), 261-310.
doi: 10.1007/s00205-005-0412-3. |
[8] |
R. Courant and K. O. Friedrichs,
Supersonic Flow and Shock Waves, Applied Mathematical Sciences, Vol. 12, Wiley-Interscience, New York, 1948. |
[9] |
C. M. Dafermos,
Hyperbolic Conservation Laws in Continuum Physics, 4th edition, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 325, Springer-Verlag, Berlin, 2016. |
[10] |
M. Ding,
Existence and stability of rarefaction wave to 1-D piston problem for the relativistic full Euler equations, J. Differential Equations, 262 (2017), 6068-6108.
doi: 10.1016/j.jde.2017.02.028. |
[11] |
M. Ding, Stability of rarefaction wave to the 1-D piston problem for exothermically reacting Euler equations Calc. Var. Partial Differential Equations, 56(2017), Art. 78, 49 pp.
doi: 10.1007/s00526-017-1162-4. |
[12] |
M. Ding, J. Kuang and Y. Zhang,
Global stability of rarefaction wave to the 1-D piston problem for the compressible full Euler equations, J. Math. Anal. Appl., 448 (2017), 1228-1264.
doi: 10.1016/j.jmaa.2016.11.059. |
[13] |
M. Ding and Y. Li, Stability and non-relativistic limits of rarefaction wave to the 1-D piston problem for the relativistic Euler equations Z. Angew. Math. Phys. 68 (2017), Art. 43, 32 pp.
doi: 10.1007/s00033-017-0787-7. |
[14] |
J. Glimm,
Solutions in the large for nonlinear hyperbolic systems of equations, Comm. Pure. Appl. Math., 18 (1965), 697-715.
doi: 10.1002/cpa.3160180408. |
[15] |
H. Holden and N. H. Risebro,
Front Tracking for Hyperbolic Conservation Laws, 2nd edition, Applied Mathematical Sciences, 152, Springer-Verlag, Berlin Heidelberg, 2015. |
[16] |
V. Kukreja, H. Yuan and Q. Zhao,
Stability of transonic jet with strong shock in two-dimensional steady compressible Euler flows, J. Differential Equations, 258 (2015), 2572-2617.
doi: 10.1016/j.jde.2014.12.017. |
[17] |
L. Liu, G. Xu and H. Yuan,
Stability of spherically symmetric subsonic flows and transonic shocks under multidimensional perturbations, Adv. Math., 291 (2016), 696-757.
doi: 10.1016/j.aim.2016.01.002. |
[18] |
A. Qu and W. Xiang,
Three-Dimensional Steady Supersonic Euler Flow Past a Concave Cornered Wedge with Lower Pressure at the Downstream, Arch Rational Mech. Anal., 228 (2018), 431-476.
doi: 10.1007/s00205-017-1197-x. |
[19] |
J. Smoller,
Shock Waves and Reaction-Diffusion Equations, 2nd edition, Springer-Verlag, New York, 1994. |
[20] |
Y.-G. Wang and H. Yuan,
Weak stability of transonic contact discontinuities in three-dimensional steady non-isentropic compressible Euler flows, Z. Angew. Math. Phys., 66 (2015), 341-388.
doi: 10.1007/s00033-014-0404-y. |
[21] |
Z. Wang and Y. Zhang,
Steady supersonic flow past a curved cone, J. Differential Equations, 247 (2009), 1817-1850.
doi: 10.1016/j.jde.2009.05.010. |
[22] |
Y. Zhang,
Steady supersonic flow over a bending wall, Nonlinear Anal. Real World Appl., 12 (2011), 167-189.
doi: 10.1016/j.nonrwa.2010.06.006. |
show all references
References:
[1] |
D. Amadori,
Initial-boundary value problems for nonlinear systems of conservation laws, NoDEA Nonlinear Differential Equations Appl., 4 (1997), 1-42.
doi: 10.1007/PL00001406. |
[2] |
A. Bressan,
Hyperbolic Systems of Conservation Laws: The One-Dimensional Cauchy Problem, Oxford Lecture Series in Mathematics and its Applications, 20, Oxford University Press, Oxford, 2000. |
[3] |
G.-Q. G. Chen, J. Kuang and Y. Zhang,
Two-dimensional steady supersonic exothermically reacting Euler flow past Lipschitz bending walls, SIAM J. Math. Anal., 49 (2017), 818-873.
doi: 10.1137/16M1075089. |
[4] |
G. -Q. G. Chen, V. Kukreja and H. Yuan, Stability of transonic characteristic discontinuities in two-dimensional steady compressible Euler flows J. Math. Phys., 54 (2013), 021506, 24 pp.
doi: 10.1063/1.4790887. |
[5] |
G.-Q. G. Chen, V. Kukreja and H. Yuan,
Well-posedness of transonic characteristic discontinuities in two-dimensional steady compressible Euler flows, Z. Angew. Math. Phys., 64 (2013), 1711-1727.
doi: 10.1007/s00033-013-0312-6. |
[6] |
G.-Q. G. Chen, Y. Zhang and D. Zhu,
Stability of compressible vortex sheets in steady supersonic Euler flows over Lipschitz walls, SIAM J. Math. Anal., 38 (2006/07), 1660-1693.
doi: 10.1137/050642976. |
[7] |
G.-Q. G. Chen, Y. Zhang and D. Zhu,
Existence and stability of supersonic Euler flows past Lipschitz wedges, Arch. Rational Mech. Anal., 181 (2006), 261-310.
doi: 10.1007/s00205-005-0412-3. |
[8] |
R. Courant and K. O. Friedrichs,
Supersonic Flow and Shock Waves, Applied Mathematical Sciences, Vol. 12, Wiley-Interscience, New York, 1948. |
[9] |
C. M. Dafermos,
Hyperbolic Conservation Laws in Continuum Physics, 4th edition, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 325, Springer-Verlag, Berlin, 2016. |
[10] |
M. Ding,
Existence and stability of rarefaction wave to 1-D piston problem for the relativistic full Euler equations, J. Differential Equations, 262 (2017), 6068-6108.
doi: 10.1016/j.jde.2017.02.028. |
[11] |
M. Ding, Stability of rarefaction wave to the 1-D piston problem for exothermically reacting Euler equations Calc. Var. Partial Differential Equations, 56(2017), Art. 78, 49 pp.
doi: 10.1007/s00526-017-1162-4. |
[12] |
M. Ding, J. Kuang and Y. Zhang,
Global stability of rarefaction wave to the 1-D piston problem for the compressible full Euler equations, J. Math. Anal. Appl., 448 (2017), 1228-1264.
doi: 10.1016/j.jmaa.2016.11.059. |
[13] |
M. Ding and Y. Li, Stability and non-relativistic limits of rarefaction wave to the 1-D piston problem for the relativistic Euler equations Z. Angew. Math. Phys. 68 (2017), Art. 43, 32 pp.
doi: 10.1007/s00033-017-0787-7. |
[14] |
J. Glimm,
Solutions in the large for nonlinear hyperbolic systems of equations, Comm. Pure. Appl. Math., 18 (1965), 697-715.
doi: 10.1002/cpa.3160180408. |
[15] |
H. Holden and N. H. Risebro,
Front Tracking for Hyperbolic Conservation Laws, 2nd edition, Applied Mathematical Sciences, 152, Springer-Verlag, Berlin Heidelberg, 2015. |
[16] |
V. Kukreja, H. Yuan and Q. Zhao,
Stability of transonic jet with strong shock in two-dimensional steady compressible Euler flows, J. Differential Equations, 258 (2015), 2572-2617.
doi: 10.1016/j.jde.2014.12.017. |
[17] |
L. Liu, G. Xu and H. Yuan,
Stability of spherically symmetric subsonic flows and transonic shocks under multidimensional perturbations, Adv. Math., 291 (2016), 696-757.
doi: 10.1016/j.aim.2016.01.002. |
[18] |
A. Qu and W. Xiang,
Three-Dimensional Steady Supersonic Euler Flow Past a Concave Cornered Wedge with Lower Pressure at the Downstream, Arch Rational Mech. Anal., 228 (2018), 431-476.
doi: 10.1007/s00205-017-1197-x. |
[19] |
J. Smoller,
Shock Waves and Reaction-Diffusion Equations, 2nd edition, Springer-Verlag, New York, 1994. |
[20] |
Y.-G. Wang and H. Yuan,
Weak stability of transonic contact discontinuities in three-dimensional steady non-isentropic compressible Euler flows, Z. Angew. Math. Phys., 66 (2015), 341-388.
doi: 10.1007/s00033-014-0404-y. |
[21] |
Z. Wang and Y. Zhang,
Steady supersonic flow past a curved cone, J. Differential Equations, 247 (2009), 1817-1850.
doi: 10.1016/j.jde.2009.05.010. |
[22] |
Y. Zhang,
Steady supersonic flow over a bending wall, Nonlinear Anal. Real World Appl., 12 (2011), 167-189.
doi: 10.1016/j.nonrwa.2010.06.006. |


[1] |
Tung Chang, Gui-Qiang Chen, Shuli Yang. On the 2-D Riemann problem for the compressible Euler equations I. Interaction of shocks and rarefaction waves. Discrete and Continuous Dynamical Systems, 1995, 1 (4) : 555-584. doi: 10.3934/dcds.1995.1.555 |
[2] |
Feimin Huang, Yi Wang, Tong Yang. Fluid dynamic limit to the Riemann Solutions of Euler equations: I. Superposition of rarefaction waves and contact discontinuity. Kinetic and Related Models, 2010, 3 (4) : 685-728. doi: 10.3934/krm.2010.3.685 |
[3] |
Jong-Shenq Guo, Hirokazu Ninomiya, Chin-Chin Wu. Existence of a rotating wave pattern in a disk for a wave front interaction model. Communications on Pure and Applied Analysis, 2013, 12 (2) : 1049-1063. doi: 10.3934/cpaa.2013.12.1049 |
[4] |
Stefano Bianchini. Interaction estimates and Glimm functional for general hyperbolic systems. Discrete and Continuous Dynamical Systems, 2003, 9 (1) : 133-166. doi: 10.3934/dcds.2003.9.133 |
[5] |
Huancheng Yao, Haiyan Yin, Changjiang Zhu. Stability of rarefaction wave for the compressible non-isentropic Navier-Stokes-Maxwell equations. Communications on Pure and Applied Analysis, 2021, 20 (3) : 1297-1317. doi: 10.3934/cpaa.2021021 |
[6] |
Li Fang, Zhenhua Guo. Zero dissipation limit to rarefaction wave with vacuum for a one-dimensional compressible non-Newtonian fluid. Communications on Pure and Applied Analysis, 2017, 16 (1) : 209-242. doi: 10.3934/cpaa.2017010 |
[7] |
Feng Xie. Nonlinear stability of combination of viscous contact wave with rarefaction waves for a 1D radiation hydrodynamics model. Discrete and Continuous Dynamical Systems - B, 2012, 17 (3) : 1075-1100. doi: 10.3934/dcdsb.2012.17.1075 |
[8] |
Bingkang Huang, Lusheng Wang, Qinghua Xiao. Global nonlinear stability of rarefaction waves for compressible Navier-Stokes equations with temperature and density dependent transport coefficients. Kinetic and Related Models, 2016, 9 (3) : 469-514. doi: 10.3934/krm.2016004 |
[9] |
Qingqing Liu, Xiaoli Wu. Stability of rarefaction wave for viscous vasculogenesis model. Discrete and Continuous Dynamical Systems - B, 2022 doi: 10.3934/dcdsb.2022034 |
[10] |
Fabio Ancona, Andrea Marson. On the Glimm Functional for general hyperbolic systems. Conference Publications, 2011, 2011 (Special) : 44-53. doi: 10.3934/proc.2011.2011.44 |
[11] |
Eun Heui Kim, Charis Tsikkou. Two dimensional Riemann problems for the nonlinear wave system: Rarefaction wave interactions. Discrete and Continuous Dynamical Systems, 2017, 37 (12) : 6257-6289. doi: 10.3934/dcds.2017271 |
[12] |
Renjun Duan, Xiongfeng Yang. Stability of rarefaction wave and boundary layer for outflow problem on the two-fluid Navier-Stokes-Poisson equations. Communications on Pure and Applied Analysis, 2013, 12 (2) : 985-1014. doi: 10.3934/cpaa.2013.12.985 |
[13] |
Lili Fan, Hongxia Liu, Huijiang Zhao, Qingyang Zou. Global stability of stationary waves for damped wave equations. Kinetic and Related Models, 2013, 6 (4) : 729-760. doi: 10.3934/krm.2013.6.729 |
[14] |
Tung Chang, Gui-Qiang Chen, Shuli Yang. On the 2-D Riemann problem for the compressible Euler equations II. Interaction of contact discontinuities. Discrete and Continuous Dynamical Systems, 2000, 6 (2) : 419-430. doi: 10.3934/dcds.2000.6.419 |
[15] |
Gui-Qiang Chen, Jun Chen, Mikhail Feldman. Transonic flows with shocks past curved wedges for the full Euler equations. Discrete and Continuous Dynamical Systems, 2016, 36 (8) : 4179-4211. doi: 10.3934/dcds.2016.36.4179 |
[16] |
Zhilei Liang. Convergence rate of solutions to the contact discontinuity for the compressible Navier-Stokes equations. Communications on Pure and Applied Analysis, 2013, 12 (5) : 1907-1926. doi: 10.3934/cpaa.2013.12.1907 |
[17] |
Ademir Pastor. On three-wave interaction Schrödinger systems with quadratic nonlinearities: Global well-posedness and standing waves. Communications on Pure and Applied Analysis, 2019, 18 (5) : 2217-2242. doi: 10.3934/cpaa.2019100 |
[18] |
Debora Amadori, Wen Shen. Front tracking approximations for slow erosion. Discrete and Continuous Dynamical Systems, 2012, 32 (5) : 1481-1502. doi: 10.3934/dcds.2012.32.1481 |
[19] |
Teng Wang, Yi Wang. Nonlinear stability of planar rarefaction wave to the three-dimensional Boltzmann equation. Kinetic and Related Models, 2019, 12 (3) : 637-679. doi: 10.3934/krm.2019025 |
[20] |
Christian Rohde, Wenjun Wang, Feng Xie. Hyperbolic-hyperbolic relaxation limit for a 1D compressible radiation hydrodynamics model: superposition of rarefaction and contact waves. Communications on Pure and Applied Analysis, 2013, 12 (5) : 2145-2171. doi: 10.3934/cpaa.2013.12.2145 |
2021 Impact Factor: 1.588
Tools
Metrics
Other articles
by authors
[Back to Top]