We consider a phase-field system modeling phase transition phenomena, where the Cahn-Hilliard-Oono equation for the order parameter is coupled with the Coleman-Gurtin heat law for the temperature. The former suitably describes both local and nonlocal (long-ranged) interactions in the material undergoing phase-separation, while the latter takes into account thermal memory effects. We study the well-posedness and longtime behavior of the corresponding dynamical system in the history space setting, for a class of physically relevant and singular potentials. Besides, we investigate the regularization properties of the solutions and, for sufficiently smooth data, we establish the strict separation property from the pure phases.
Citation: |
[1] |
D. Brochet, Maximal attractor and inertial sets for some second and fourth order phase field models, in Pitman Res. Notes Math. Ser. , Longman Sci. Tech., Harlow, 296 (1993), 77–85.
![]() ![]() |
[2] |
D. Brochet, D. Hilhorst and A. Novick-Cohen, Maximal attractor and inertial sets for a conserved phase field model, Adv. Diff. Eqns., 1 (1996), 547-578.
![]() ![]() |
[3] |
G. Caginalp, A conserved phase field system; implications for kinetic undercooling, Phys. Rev. B, 38 (1988), 789-791.
![]() |
[4] |
G. Caginalp, The dynamics of a conserved phase-field system: Stefan-like, Hele-Shaw and Cahn-Hilliard models as asymptotic limits, IMA J. Appl. Math., 44 (1990), 77-94.
![]() ![]() |
[5] |
J. W. Cahn, On spinodal decomposition, Acta Metall., 9 (1961), 795-801.
![]() |
[6] |
J. W. Cahn and J. E. Hilliard, Free energy of a nonuniform system I. Interfacial free energy, J. Chem. Phys., 28 (1958), 258-267.
![]() |
[7] |
B. D. Coleman and M. E. Gurtin, Equipresence and constitutive equations for rigid heat conductors, Z. Angew. Math. Phys., 18 (1967), 199-208.
![]() ![]() |
[8] |
M. Conti and A. Giorgini, The three-dimensional Cahn-Hilliard-Brinkman system with unmatched viscosities, preprint.
![]() |
[9] |
M. Conti, V. Pata and M. Squassina, Singular limit of differential systems with memory, Indiana Univ. Math. J., 55 (2006), 169-215.
![]() ![]() |
[10] |
C. M. Dafermos, Asymptotic stability in viscoelasticity, Arch. Rational Mech. Anal., 37 (1970), 297-308.
![]() ![]() |
[11] |
C. G. Gal, A. Giorgini and M. Grasselli, The nonlocal Cahn-Hilliard equation with singular potential: Well-posedness, regularity and strict separation property, J. Differential Equations, 263 (2017), 5253-5297.
![]() ![]() |
[12] |
S. Gatti, M. Grasselli and V. Pata, Exponential Attractors for a conserved phase-field system with memory, Phys. D, 189 (2004), 31-48.
![]() ![]() |
[13] |
S. Gatti, A. Miranville, V. Pata and S. Zelik, Continuous families of exponential attractors for singularly perturbed equations with memory, Proc. Roy. Soc. Edinburgh Sect. A, 140 (2010), 329-366.
![]() ![]() |
[14] |
C. Giorgi, M. Grasselli and V. Pata, Uniform attractors for a phase-field model with memory and quadratic nonlinearity, Indiana Univ. Math. J., 48 (1999), 1395-1445.
![]() ![]() |
[15] |
A. Giorgini, M. Grasselli and A. Miranville, The Cahn-Hilliard-Oono equation with singular potential, Math. Models Methods Appl. Sci., 27 (2017), 2485-2510.
![]() ![]() |
[16] |
M. Grasselli and V. Pata, Attractors of phase-field systems with memory, in Mathematical methods and models in phase transitions, (eds. A. Miranville), Nova Science Publishers, 2005,157–175.
![]() ![]() |
[17] |
M. Grasselli, V. Pata and F. M. Vegni, Longterm dynamics of a conserved phase-field model with memory, Asymptot. Anal., 33 (2003), 261-320.
![]() ![]() |
[18] |
M. E. Gurtin and A. C. Pipkin, A general theory of heat conduction with finite wave speeds, Arch. Rational Mech. Anal., 31 (1968), 113-126.
![]() ![]() |
[19] |
A. Haraux, Systémes Dynamiques Dissipatifs et Applications, Recherches en Mathématiques Appliquées, Vol. 17, Masson, Paris, 1991.
![]() ![]() |
[20] |
A. Miranville, Asymptotic behavior of the Cahn-Hilliard-Oono equation, J. Appl. Anal. Comput., 1 (2011), 523-536.
![]() ![]() |
[21] |
A. Miranville, On the conserved phase-field system, J. Math. Anal. Appl., 400 (2013), 143-152.
![]() ![]() |
[22] |
A. Miranville, The Cahn-Hilliard equation and some of its variants, AIMS Math., 2 (2017), 479-544.
![]() |
[23] |
A. Miranville and S. Zelik, Robust exponential attractors for Cahn-Hilliard type equations with singular potentials, Math. Methods Appl. Sci., 27 (2004), 545-582.
![]() ![]() |
[24] |
Y. Oono and S. Puri, Computationally efficient modeling of ordering of quenched phases, Phys. Rev. Lett., 58 (1987), 836-839.
![]() |
[25] |
V. Pata and S. Zelik, A result on the existence of global attractors for semigroups of closed operators, Commun. Pure Appl. Anal., 6 (2007), 481-486.
![]() ![]() |
[26] |
V. Pata and A. Zucchi, Attractors for a damped hyperbolic equation with linear memory, Adv. Math. Sci. Appl., 11 (2001), 505-529.
![]() ![]() |
[27] |
R. Temam, Infinite-dimensional Dynamical Systems in Mechanics and Physics, 2nd edition, Applied Mathematical Sciences, Vol. 68, Springer-Verlag, New York, 1997.
![]() ![]() |
[28] |
S. Villain-Guillot, Phases Modulées et Dynamique de Cahn-Hilliard, Habilitation thesis, Université Bordeaux I, 2010.
![]() |